J. Mater. Sci. Technol. ›› 2020, Vol. 55: 56-72.DOI: 10.1016/j.jmst.2019.09.037
• Invited Review • Previous Articles Next Articles
Zhuosen Wanga, Xijun Xua, Shaomin Jib,*(), Zhengbo Liua, Dechao Zhanga, Jiadong Shena, Jun Liua,*(
)
Received:
2019-04-30
Accepted:
2019-09-05
Published:
2020-10-15
Online:
2020-10-27
Contact:
Shaomin Ji,Jun Liu
About author:
Zhuosen Wang received his master degree in South China Normal University (SCNU). He is currently a third-year Ph.D. student under the supervision of Prof. Jun Liu at South China University of Technology (SCUT). His research interests focus on lithium-sulfur cathode materials.|Xijun Xu received his Ph.D. from South China University of Technology in 2019. Dr. Xu has deeply researched the mechanism of charge/discharge process of Fe-based cath-ode/anode materials for alkaline (Li/Na/K)-ion batteries. His current research interests are organic cathode mate-rials and metal-selenide anode materials.|Shaomin Ji received Ph.D. degree in Applied Chem-istry from Dalian University of Technology in 2011. Sheworked as postdoctoral research fellow at Universityof Melbourne (Australia) and University of Regensburg(Germany), and is currently Professor at the GuangdongUniversity of Technology. Her current research topics arefocused on fluorescent molecular probes and luminescentmaterials, organic photoelectric materials, organic elec-trode/electrolyte materials for rechargeable batteries.|Zhengbo Liu received his bachelor degree in Central South University in 2016. He is currently a Ph.D. student under the supervision of Prof. Jun Liu at South China University of Technology (SCUT). His research interests are cathode materials for sodium-ion batteries.|Dechao Zhang received his Master’s degree in Yanshan University (Qinhuangdao, Hebei) in 2018. He is currently a Ph.D. student under the supervision of Prof. Jun Liu at South China University of Technology (SCUT). His research interests focus on solid electrolytes and all-solid-state bat-teries.|Jiadong Shen got his bachelor degree in South China Nor-mal University (SCNU). He is a first-year Ph.D. student in South China University of Technology (SCUT). His research interests are metal (Li/Na)-sulfur batteries and ab-initio calculations for the electro-catalysis materials (Castep, VASP, CP2K and LAMMPS).|Jun Liu is a Professor in South China University of Technol-ogy (SCUT). He received his Ph.D. in Chemical Engineering and Technology at Dalian University of Technology in 2011. From 2012 to 2013, he worked as an Alfred Deakin Postdoctoral fellow at Deakin University, Australia. After that he moved to Max Planck Institute for Solid State Research in Stuttgart, Germany, worked as a postdoc-toral fellow. His current research interests mainly include high-energy density Li/Na-ion batteries, all-solid-state batteries, Li-S batteries and novel energy storage devices.
Zhuosen Wang, Xijun Xu, Shaomin Ji, Zhengbo Liu, Dechao Zhang, Jiadong Shen, Jun Liu. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries[J]. J. Mater. Sci. Technol., 2020, 55: 56-72.
Fig. 2. (a) A typical charge/discharge profile for Li-S batteries [19]; (b) illustration of the charging/discharging process representing the products of polysulfides and insoluble Li2S2/Li2S in a rechargeable Li-S battery consisting of a negative Li anode, a positive sulfur cathode and an electrolyte [20].
Fig. 4. (a) Schematic fabrication process of a self-weaving S-MWCNT composite cathode synthesized by an in-situ sulfur deposition method; (b) the first discharge/charge profiles at 1 C, 2 C and 3 C rates [49].
Fig. 5. (a) Schematic illustration of the hierarchical, free-standing electrode with ultrahigh sulfur-loading capability via a facile bottom-up approach. Red and purple spheres represent Li ions and electrons, respectively; (b) photograph of the bottom-up free-standing electrode in both the extending and bending (inset) states; (c) cycling performance at a current density of 0.05 C [51].
Fig. 6. (a) Schematic illustration of the synthesis process of flexible CNT/ACNF@MnO2 electrode; (b, c) digital images of CNT/ACNF@MnO2 paper; (d) TEM image of CNT/ACNF@MnO2; (e) cycling performance of CNT/ACNF@MnO2 electrode at 0.5 C rate over 300 cycles [60].
Fig. 7. (a) Schematic of the structure and fabrication process of flexible binder-free VHS@S/SWCNT electrode; (b) cycling performances of VHS-200@S/SWCNT, VHS-400@S/SWCNT and VHS-900@S/SWCNT electrodes at 1 C; (c) galvanostatic discharge/charge voltage profiles of VHS-200@S/SWCNT at 0.5, 1, 2, 5, 10 and 20 C [61].
Fig. 8. (a) Schematic illustration and photograph of the flexible self-supporting GS/S paper; (b) cycling performance of primitive GS paper and composite GS/S paper electrodes at 0.1 C [73].
Fig. 9. (a) Schematic process of fabricating flexible rGO-S composite films; (b) cycling performance of rGO-S mixture and rGO-S composite film electrodes at 0.1 C and long-term cycle stability of rGO-S composite film electrode at 1 C for 500 cycles [74].
Fig. 10. (a) Schematic illustration of the synthesis of different building units and the composite PRGO/S/Mn3O4@PANI-SA cathode; (b) cycling performance of PRGO/S/MO@PANI-SA cathode at 2 and 5 A g-1, after initial cycle of activation at 200 mA g-1 [76].
Fig. 11. (a) Schematic illustration of the synthesis process of SGP cathode; (b) cycling performance of SGP cathode at 1 C for 500 cycles; (c) photographs of LED lit by soft-packaged Li-S batteries at different folding angles; (d) cycling performance of soft-packaged Li-S batteries in various angles; (e) long-term cycling performance of soft-packaged Li-S batteries under 180° folding state [77].
Fig. 12. (a) Cyclic stability of electrocatalytically active 3DG, 3DG/HM and 3DG/TM as working electrodes vs. Li/Li+ at 0.1 C rate; (b) rate performances of 3DG/TM at various cycling rates; (c) long-term cyclability of 3DG/TM at 1 C rate [78].
Fig. 13. (a) The schematic of MFC-based composites; (b) images of MF and MFC; (c) cycling performances at 0.1 C [81]; (d) schematic illustration of the preparation process for the NCF-S@rGO composite; (e) long-term cycling performance at 0.5 C (inset is the corresponding voltage profiles after different cycles at 0.5 C [82].
Fig. 14. (a) Schematic illustration of the fabrication process for CF@CNTs/MgO-S composites; (b) long-term cycling performance and Coulombic efficiency at 1 C after two cycles activation at 0.05 C; (c) long-term cycling performance of CF@CNTs/MgO-S electrode with sulfur loading of 1.2 mg cm-2 at 2 C; (d) schematic diagram of soft-packaged Li-S battery and bending test [83].
Fig. 15. (a) Schematic illustration of the structure and fabrication process of the flexible binder-free NCF/CNT/PEDOT@S and NCF/CNT@S electrodes; (b) cycling performances of NCF/CNT/ PEDOT@S and NCF/CNT@S electrodes at 0.5 C with a sulfur loading of 2.6 mg cm-2 [84].
Fig. 16. (a) Schematic illustration for the synthesis procedure of hierarchical SnO2 nanosheets on CNFs; (b) rate performances of CNFs/S, C@SnS2/S and C@SnO2/S with corresponding coulombic efficiency; (c) long-term cycling stability test showing an unprecedented high capacity retention over 1000 cycles at 2 C [91].
Fig. 17. (a) Schematic illustration for the preparation of WS2 vertically aligned on the CNFs; (b) long-term cycling stability test showing an unprecedented high capacity retention over 1500 cycles at 2 C; (c) schematics of various polysulfides conformations on C@WS2/S; (d) binding energies (Eb) for the Li-S composites at six different lithiation stages (S8, Li2S8, Li2S6, Li2S4, Li2S3 and Li2S) on C@WS2/S, as given by first-principles calculations designed to study the interaction between the lithium sulfide species and WS2 [92].
Fig. 18. (a) Schematic illustration of synthesis process of PCF/VN composites; (b) cycling performances of four electrodes at 0.1 C (the green axis corresponds to the areal capacity of PCF/VN/S electrode) [94].
Fig. 19. (a, b) Schematic illustration of the synthesis process for S@PCNFs-CNT electrode; (c, d) photograph of free-standing and flexible PCNFs electrode; (e) charge capacity-cycle number of S@PCNFs-CNT and S@PCNFs electrodes at 50 mA g-1 [99].
Fig. 20. (a) Schematic illustration of the production of freestanding flexible Li2S@NCNF paper electrode via carbothermal reduction of Li2SO4@PVP fabrics [105]; (b) schematic illustration of the fabrication process for the S/TiO2/G/NPCFs composites; (c) photographs of LED device lighten by the flexible battery during folding [106].
Cathode | Areal sulfur loading in electrode (mg cm-2) | Current Density | Cycle Number | Initial & retained discharge capacity (mA h g-1) | Ref. |
---|---|---|---|---|---|
S-CNT-A | NG | 1 C | 100 | 1352/915 | [ |
CNT Paper | 6.3 | 0.05 C | 150 | 995/700 | [ |
CNT/ACNF@MnO2 | 2.4 | 0.2 C | 100 | 1022/927 | [ |
VHS@S/SWCNT | 1.5 | 1 C | 300 | 1150/1069 | [ |
GO/S Paper | NG | 0.1 C | 100 | 720/600 | [ |
rGO-S Films | 2.2 | 0.1 C | 200 | 1302/978 | [ |
PRGO/S/Mn3O4@PANI-SA. | 2.05 | 5 A g-1 | 500 | 1015/722 | [ |
PEDOT:PSS/rGO | 2.0 | 0.1 C | 500 | 1000/751 | [ |
3DG/TM-S | 10 | 0.1 C | 200 | 1181/1137 | [ |
NCF-S@rGO | 3.2 | 0.5 C | 250 | 600/520 | [ |
CF@CNTs/MgO | 2.4 | 1.0 C | 350 | 911/619 | [ |
NCF/CNT/PEDOT@S | 2.6 | 0.5 C | 100 | 1005/802 | [ |
C@SnS2 | 2.05 | 2.0 C | 1000 | 780/510 | [ |
C@WS2 | 2.0 | 2.0 C | 1500 | 563/502 | [ |
PCF/VN | 8.1 | 0.1 C | 250 | 1310.8/1052.5 | [ |
S@PCNFs | 0.8 | 0.05 A g-1 | 100 | 890/637 | [ |
Li2S@NCNF | 3 | 0.2 C | 50 | 720/625 | [ |
S/TiO2/G/NPCFs | 1.2 | 1.0 C | 500 | 987/618 | [ |
Table 1 Comparison of carbon-based materials used as cathode hosts for flexible Li-S batteries.
Cathode | Areal sulfur loading in electrode (mg cm-2) | Current Density | Cycle Number | Initial & retained discharge capacity (mA h g-1) | Ref. |
---|---|---|---|---|---|
S-CNT-A | NG | 1 C | 100 | 1352/915 | [ |
CNT Paper | 6.3 | 0.05 C | 150 | 995/700 | [ |
CNT/ACNF@MnO2 | 2.4 | 0.2 C | 100 | 1022/927 | [ |
VHS@S/SWCNT | 1.5 | 1 C | 300 | 1150/1069 | [ |
GO/S Paper | NG | 0.1 C | 100 | 720/600 | [ |
rGO-S Films | 2.2 | 0.1 C | 200 | 1302/978 | [ |
PRGO/S/Mn3O4@PANI-SA. | 2.05 | 5 A g-1 | 500 | 1015/722 | [ |
PEDOT:PSS/rGO | 2.0 | 0.1 C | 500 | 1000/751 | [ |
3DG/TM-S | 10 | 0.1 C | 200 | 1181/1137 | [ |
NCF-S@rGO | 3.2 | 0.5 C | 250 | 600/520 | [ |
CF@CNTs/MgO | 2.4 | 1.0 C | 350 | 911/619 | [ |
NCF/CNT/PEDOT@S | 2.6 | 0.5 C | 100 | 1005/802 | [ |
C@SnS2 | 2.05 | 2.0 C | 1000 | 780/510 | [ |
C@WS2 | 2.0 | 2.0 C | 1500 | 563/502 | [ |
PCF/VN | 8.1 | 0.1 C | 250 | 1310.8/1052.5 | [ |
S@PCNFs | 0.8 | 0.05 A g-1 | 100 | 890/637 | [ |
Li2S@NCNF | 3 | 0.2 C | 50 | 720/625 | [ |
S/TiO2/G/NPCFs | 1.2 | 1.0 C | 500 | 987/618 | [ |
[1] |
H. Nishide, K. Oyaizu, Science 319 (2008) 737-738.
DOI URL PMID |
[2] | L. Wen, J. Chen, J. Liang, F. Li, H.M. Cheng, Natl. Sci. Rev. 4 (2017) 20-23. |
[3] |
D.H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y. Kim, Nat. Mater. 9 (2010) 511-517.
DOI URL PMID |
[4] |
G.H. Gelinck, H.E.A. Huitema, E. Veenendaal, E. Cantatore, L. Schrijne makers, T.C.T. Geuns, Nat. Mater. 3 (2004) 106-110.
DOI URL PMID |
[5] |
S. Park, M. Vosguerichian, Z. Bao, Nanoscale 5 (2013) 1727-1752.
DOI URL PMID |
[6] | S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat.Nanotech. 5 (2010) 574-578. |
[7] |
R.V. Noorden, Nature 507 (2014) 26-28.
DOI URL PMID |
[8] |
A. Manthiram, Y.Z. Fu, S.H. Chung, Y.S. Su, Chem. Rev. 114 (2014) 11751-11787.
DOI URL PMID |
[9] |
X. Liang, L.F. Nazar, ACS Nano 10 (2016) 4192-4198.
DOI URL PMID |
[10] | J.R. He, L. Luo, Y.F. Chen, A. Manthiram, Adv. Mater. 29 (2017) 1702707-1702711. |
[11] |
Y.J. Li, J.M. Fan, J.H. Zhang, J.F. Yang, R.M. Yuan, J.K. Chang, M.S. Zheng, Q.F. Dong, ACS Nano 11 (2017) 11417-11424.
DOI URL PMID |
[12] |
F. Zhou, Z. Li, X. Luo, T. Wu, B. Jiang, L.L. Lu, H.B. Yao, M. Antonietti, S.H. Yu, Nano Lett. 18 (2018) 1035-1043.
DOI URL PMID |
[13] |
Z.W. Seh, Y.M. Sun, Q.F. Zhang, Y. Cui, Chem. Soc. Rev. 45 (2016) 5605-5634.
DOI URL PMID |
[14] | Z. Li, H.B. Wu, X.W. Lou, Energy Environ. Sci. 9 (2016) 3061-3070. |
[15] |
Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 42 (2013) 3018-3032.
DOI URL PMID |
[16] |
P. Adelhelm, P. Hartmann, C.L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein J. Nanotechnol. 6 (2015) 1016-1055.
DOI URL PMID |
[17] |
L.M. Suo, Y.S. Hu, H. Li, M. Armand, L.Q. Chen, Nat. Commun. 4 (2013) 1481-1499.
DOI URL PMID |
[18] |
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Nat. Mater. 11 (2012) 19-29.
URL PMID |
[19] | C.X. Li, Z.C. Xi, D.X. Guo, X.J. Chen, L.W. Yin, Small 14 (2018) 1701986-1702006. |
[20] |
S. Rehman, K. Khan, Y. Zhao, Y. Hou, J. Mater. Chem. A 5 (2017) 3014-3038.
DOI URL |
[21] | R. Fang, S. Zhao, Z. Sun, D.W. Wang, H.M. Cheng, F. Li, Adv. Mater. 29 (2017) 1606823-1606847. |
[22] |
W. Yang, W. Yang, A.L. Song, G. Sun, G.J. Shao, Nanoscale 10 (2018) 816-824.
DOI URL PMID |
[23] | K. Kumaresan, Y. Mikhaylik, R.E. White, J. Electrochem. Soc. 155 (2008) A576-A582. |
[24] |
Y.S. Su, A. Manthiram, Nat. Commun. 3 (2012) 1166-1170.
DOI URL PMID |
[25] | Y.V. Mikhaylik, J.R. Akridge, J. Electrochem. Soc. 150 (2003) A306-A3l1. |
[26] | B.H. Jeon, J.H. Yeon, K.M. Kim, I.J. Chung, J. Power Sources 109 (2002) 89-97. |
[27] | X. Ji, L.F. Nazar, J. Mater. Chem. 20 (2010) 9821-9826. |
[28] | D. Wang, Q.C. Zeng, G.M. Zhou, L.C. Yin, F. Li, H.M. Cheng, L.R. Gentle, G.Q.M. Lu, J. Mater. Chem. A l (2013) 9382-9394. |
[29] |
J.C. Guo, Y.H. Xu, C.S. Wang, Nano Lett. 11 (2011) 4288-4294.
DOI URL PMID |
[30] | S.H. Chung, A. Manthiram, Electrochim. Acta 107 (2013) 569-576. |
[31] |
S.H. Chung, A. Manthiram, Adv. Mater. 26 (2014) 1360-1365.
DOI URL PMID |
[32] | Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Nat. Energy 1 (2016) 16132-16142. |
[33] | X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Adv. Mater. 29 (2017) 1601759-1601783. |
[34] | Q. Pang, J.T. Tang, H. Huang, X. Liang, C. Hart, K.C. Tam, L.F. Nazar, Adv. Mater. 27 (2015) 6021-6028. |
[35] |
G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J.X. Geng, Nat. Commun. 7 (2016) 10601-10610.
DOI URL PMID |
[36] |
H. Kim, J. Lee, H. Ahn, O. Kim, M.J. Park, Nat. Commun. 6 (2015) 7278-7287.
DOI URL PMID |
[37] | Z. Li, J. Zhang, X.W. Lou, Angew. Chem. Int. Edit. 127 (2015) 13078-13082. |
[38] | Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Nat. Commun. 5 (2014) 4759-4766. |
[39] | Q.L. Deng, Y.P. Fu, C.B. Zhu, Y. Yu, Small 15 (2019) 1804884-1804909. |
[40] | T. Chen, L.B. Ma, B.R. Cheng, R.P. Chen, Y. Hu, G.Y. Zhu, Y.R. Wang, J. Liang, Z.X. Tie, J. Liu, Z. Jin, Nano Energy 38 (2017) 239-248. |
[41] |
Q.P. Wu, X.J. Zhou, J. Xu, F.H. Cao, C.L. Li, J. Energy Chem. 38 (2019) 94-113.
DOI URL |
[42] |
Q. Zhao, Q.Z. Zhu, J.W. Miao, P. Zhang, B. Xu, Nanoscale 11 (2019) 8442-8448.
DOI URL PMID |
[43] |
L. Wen, F. Li, H.M. Cheng, Adv. Mater. 28 (2016) 4306-4337.
DOI URL PMID |
[44] | H. Wu, Q.P. Wu, F.L. Chu, J.L. Hu, Y.H. Cui, C.L. Yin, C.L. Li, J. Power Sources 419 (2019) 72-81. |
[45] | H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Adv. Energy Mater. 7 (2017) 1700260-1700313. |
[46] | S. Iijima, Nature 354 (1991) 56-58. |
[47] | S. Dorfler, M. Hagen, H. Althues, J. Tu¨bke, S. Kaskel, M.J. Hoffmann, Chem. Commun. 48 (2012) 4097-4099. |
[48] | C. Barchasz, F. Mesguich, J. Dijon, J.C. Lepretre, S. Patoux, F. Alloin, J. Power Sources 211 (2012) 19-26. |
[49] |
Y.S. Su, Y.Z. Fu, A. Manthiram, Phys. Chem. Chem. Phys. 14 (2012) 14495-14499.
DOI URL PMID |
[50] | K.K. Jin, X.F. Zhou, L.Z. Zhang, X. Xin, G.H. Wang, Z.P. Liu, J. Phys. Chem. C 117 (2013) 21112-21119. |
[51] | Z. Yuan, H.J. Peng, J.Q. Huang, X.Y. Liu, D.W. Wang, X.B. Cheng, Q. Zhang, Adv. Funct. Mater. 24 (2014) 6105-6112. |
[52] |
K.L. Jiang, J.P. Wang, Q.Q. Li, L.A. Liu, C.H. Liu, S.S. Fan, Adv. Mater. 23 (2011) 1154-1161.
DOI URL PMID |
[53] |
L. Sun, M.Y. Li, Y. Jiang, W.B. Kong, K.L. Jiang, J.P. Wang, S.S. Fan, Nano Lett. 14 (2014) 4044-4049.
DOI URL PMID |
[54] |
L. Sun, D.T. Wang, Y.F. Luo, W.B. Kong, Y. Wu, L.N. Zhang, K.L. Jiang, Q.Q. Li, Y.H. Zhang, J.P. Wang, S.S. Fan, ACS Nano 10 (2016) 1300-1308.
DOI URL PMID |
[55] | S. Rehman, T. Tang, Z. Ali, X. Huang, Y. Hou, Small 13 (2017) 1700087-1700094. |
[56] |
Y.Y. Mao, G.R. Li, Y. Guo, Z.P. Li, C.D. Liang, X.S. Peng, Z. Lin, Nat. Commun. 8 (2017) 14628-14635.
DOI URL PMID |
[57] | S. Niu, Z. Wang, T. Zhou, M. Yu, M. Yu, J. Qiu, Adv. Funct. Mater. 27 (2017) 1605332-1605339. |
[58] | X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Adv. Mater. 29 (2017) 1603040-1603046. |
[59] |
Z. Cui, C. Zu, W. Zhou, A. Manthiram, J.B. Goodenough, Adv. Mater. 28 (2016) 6926-6931.
URL PMID |
[60] | H.H. Xu, L. Qie, A. Manthiramn, Nano Energy 26 (2016) 224-232. |
[61] | M. Zhang, Y. Yang, X.H. Zhang, M. Cheng, H.X. Yuan, K. Amin, A. Ahmad, L.J. Mao, W. Yan, Z.X. Wei, Adv. Mater. Interf. 5 (2018) 1800766-1800775. |
[62] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666-669.
DOI URL PMID |
[63] |
A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183-191.
DOI URL PMID |
[64] |
F. Bonaccorso, L. Colombo, G.H. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347 (2015) 1246501-1246511.
DOI URL PMID |
[65] | W. Lv, Z.J. Li, Y.Q. Deng, Q.H. Yang, F.Y. Kang, Energy Storage Mater. 2 (2016) 107-138. |
[66] | P.B. Geng, S.S. Zheng, H. Tang, R.M. Zhu, L. Zhang, S. Cao, H.G. Xue, H. Pang, Adv. Energy Mater. 8 (2018) 1703259-1703284. |
[67] |
D.C. Lin, Y.Y. Liu, Z. Liang, H.W. Lee, J. Sun, H.T. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 11 (2016) 626-632.
DOI URL PMID |
[68] | C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M.V. Costache, M. Paradinas, Science 360 (2018) 199-203. |
[69] | H. Gwon, H.S. Kim, K.U. Lee, D.H. Seo, Y.C. Park, Y.S. Lee, B.T. Ahn, K. Kang, Energy Environ. Sci. 4 (2011) 1277-1283. |
[70] |
L.L. Zhang, X. Zhao, M.D. Stoller, Y.W. Zhu, H.X. Ji, S. Murali, Y.P. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Nano Lett. 12 (2012) 1806-1812.
DOI URL PMID |
[71] |
Y.X. Xu, Z.Y. Lin, X.Q. Huang, Y. Liu, Y. Huang, X.F. Duan, ACS Nano 7 (2013) 4042-4049.
URL PMID |
[72] |
Y.N. Meng, Y. Zhao, C.G. Hu, H.H. Cheng, Y. Hu, Z.P. Zhang, G.Q. Shi, L.T. Qu, Adv. Mater. 25 (2013) 2326-2331.
DOI URL PMID |
[73] | J. Jin, Z.Y. Wen, G.Q. Ma, Y. Lu, Y.M. Cui, M.F. Wu, X. Liang, X.W. Wu, RSC Adv. 3 (2013) 2558-2560. |
[74] |
J. Cao, C. Chen, Q. Zhao, N. Zhang, Q.Q. Lu, X.Y. Wang, Z.Q. Niu, J. Chen, Adv. Mater. 28 (2016) 9629-9636.
DOI URL PMID |
[75] |
S.W. Luo, M.J. Yao, S. Lei, P.Z. Yan, X. Wei, X.T. Wang, L.L. Liu, Z.Q. Niu, Nanoscale 9 (2017) 4646-4651.
DOI URL PMID |
[76] | A. Ghosh, R. Manjunatha, R. Kumar, S. Mitra, ACS Appl. Mater. Interfaces 8 (2016) 33775-33785. |
[77] |
P.T. Xiao, F.X. Bu, G.H. Yang, Y. Zhang, Y.X. Xu, Adv. Mater. 29 (2017) 1703324-1703331.
DOI URL |
[78] |
J.R. He, G. Hartmann, M. Lee, G.S. Hwang, Y.F. Chen, A. Manthiram, Energy Environ. Sci. 12 (2019) 344-350.
DOI URL |
[79] | H.D. Shi, X.J. Zhao, Z.S. Wu, Y.F. Dong, P.F. Lu, J. Chen, W.C. Ren, H.M. Cheng, X.H. Bao, Nano Energy 60 (2019) 743-751. |
[80] |
L.W. Mi, W.D. Xiao, S.Z. Cui, H.W. Hou, W.H. Chen, Dalton Trans. 45 (2016) 3305-3309.
DOI URL PMID |
[81] | Y.B. An, Q.Z. Zhu, L.F. Hu, S.K. Yu, Q. Zhao, B. Xu, J. Mater. Chem. A 4 (2016) 15605-15611. |
[82] | M.W. Xiang, L. Yang, Y.F. Zheng, J. Huang, P. Jing, H. Wu, Y. Zhang, H. Liu, J. Mater. Chem. A 5 (2017) 18020-18028. |
[83] | M.W. Xiang, H. Wu, H. Liu, J. Huang, Y.F. Zheng, L. Yang, P. Jing, Y. Zhang, S.X. Dou, H.K. Liu, Adv. Funct. Mater. 27 (2017) 1702573-1702585. |
[84] |
M. Zhang, K. Amin, M. Cheng, H.X. Yuan, L.J. Mao, W. Yan, Z.X. Wei, Nanoscale 10 (2018) 21790-21797.
URL PMID |
[85] | J.R. He, Y.F. Chen, A. Manthiram, Adv. Energy Mater. 9 (2019) 1900584-1900592. |
[86] | J.B. Donnet, T.K. Wang, S. Rebouillat, J.C.M. Peng, Carbon Fibers, MarcelDekker, New York, 1998. |
[87] |
B. Liu, J. Zhang, X.F. Wang, G. Chen, D. Chen, C.W. Zhou, G.Z. Shen, Nano Lett. 12 (2012) 3005-3011.
DOI URL PMID |
[88] | L.F. Shen, Q. Che, H.S. Li, X.G. Zhang, Adv. Funct. Mater. 24 (2014) 2630-2637. |
[89] |
R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Adv. Mater. 23 (2011) 5641-5644.
DOI URL PMID |
[90] | S.S. Zhang, D.T. Tran, J. Power Sources 211 (2012) 169-172. |
[91] | M.X. Wang, L.S. Fan, X. Wu, D. Tian, J.H. Cheng, Y. Qiu, H.X. Wu, B. Guan, N.Q. Zhang, K.N. Sun, Y. Wang, J. Mater. Chem. A 5 (2017) 19613-19618. |
[92] | T.Y. Lei, W. Chen, J.W. Huang, C.Y. Yan, H.X. Sun, C. Wang, W.L. Zhang, Y.R. Li, J. Xiong, Adv. Energy Mater. 7 (2017) 1601843-1601850. |
[93] |
Q.F. Zhang, Y.P. Wang, Z.W. Seh, Z.H. Fu, R.F. Zhang, Y. Cui, Nano Lett. 15 (2015) 3780-3786.
DOI URL PMID |
[94] | Y. Zhong, D.L. Chao, S.J.E. Deng, J.Y. Zhan, R.Y. Fang, Y. Xia, Y.D. Wang, X.L. Wang, X.H. Xia, J.P. Tu, Adv. Funct. Mater. 28 (2018) 1706391-1706399. |
[95] |
J. Chang, J. Shang, Y.M. Sun, L.K. Ono, D.R. Wang, Z.J. Ma, Q.Y. Huang, D.D. Chen, G.Q. Liu, Y. Cui, Y.B. Qi, Z.J. Zheng, Nat. Commun. 9 (2018) 4480-4490.
DOI URL PMID |
[96] | H. Tsutsumi, K. Sunada, Y. ShaoHorn, N. Dudney, T. Fuller, ECS Trans. 35 (2011) 49-54. |
[97] | L.W. Ji, M.M. Rao, S. Aloni, L. Wang, E.J. Cairns, Y.G. Zhang, Energy Environ. Sci. 4 (2011) 5053-5059. |
[98] |
M. Inagaki, Y. Yang, F.Y. Kang, Adv. Mater. 24 (2012) 2547-2566.
DOI URL PMID |
[99] |
L.C. Zeng, F.S. Pan, W.H. Li, Y. Jiang, X.W. Zhong, Y. Yu, Nanoscale 6 (2014) 9579-9587.
URL PMID |
[100] | C. Wu, L.J. Fu, J. Maier, Y. Yu, J. Mater. Chem. A 3 (2015) 9438-9445. |
[101] |
L.C. Zeng, Y. Jiang, J. Xu, M. Wang, W.H. Li, Y. Yu, Nanoscale 7 (2015) 10940-10949.
DOI URL PMID |
[102] | L.C. Zeng, W.C. Zeng, Y. Jiang, X. Wei, W.H. Li, C.L. Yang, Y.W. Zhu, Y. Yu, Adv. Energy Mater. 5 (2015) 1401377-1401386. |
[103] | L.C. Zeng, X. Wei, J.Q. Wang, Y. Jiang, W.H. Li, Y. Yu, J. Power Sources 281 (2015) 461-469. |
[104] |
Y. Yao, L.C. Zeng, S.H. Hu, Y. Jiang, B.B. Yuan, Y. Yu, Small 13 (2017) 1603513-1603520.
DOI URL |
[105] | M.L. Yu, Z.Y. Wang, Y.W. Wang, Y.F. Dong, J.S. Qiu, Adv. Energy Mater. 7 (2017) 1700018-1700027. |
[106] | X. Song, T. Gao, S.Q. Wang, Y. Bao, G.P. Chen, L.X. Ding, H.H. Wang, J. Power Sources 356 (2017) 172-180. |
[107] | A. Fu, C.Z. Wang, F. Pei, J.Q. Cui, X.L. Fang, N.F. Zheng, Small 15 (9) (2019) 1804786-1804806. |
[108] | Y.Y. Yan, C. Cheng, L. Zhang, Y.G. Li, J. Lu, Adv. Energy Mater. (2019) 1900148-1900162. |
[109] | X. Chen, T.Z. Hou, K.A. Persson, Q. Zhang, Mater. Today 22 (2019) 142-158. |
[110] | Y.Y. Zhao, Y.S. Ye, F. Wu, Y.J. Li, L. Li, R.J. Chen, Adv. Mater. 31 (2019) 1806532-1806558. |
[111] | J.D. Shen, J. Liu, Z.B. Liu, R.Z. Hu, J.W. Liu, M. Zhu, Chem.-Eur. J. 28 (2018) 4573-4582. |
[112] |
J.D. Shen, X.J. Xu, J. Liu, Z.B. Liu, F.K. Liu, R.Z. Hu, J.W. Liu, X.H. Hou, Y.Z. Feng, Y. Yu, M. Zhu, ACS Nano 13 (2019) 8986-8996.
DOI URL PMID |
[113] | Z.S. Wang, J.D. Shen, J. Liu, X.J. Xu, Z.B. Liu, R.Z. Hu, L.C. Yang, Y.Z. Feng, J. Liu, Z.C. Shi, L.Z. Ouyang, Y. Yu, M. Zhu, Adv. Mater. 31 (2019) 1902228-1902238. |
[1] | Jin Zhang, Yanghui Liu, Liqiang Guo, Ning Liu, Hui Xiao, Changqing Chen, Guodong Wu. Flexible Oxide-Based Thin-Film Transistors on Plastic Substrates for Logic Applications [J]. J. Mater. Sci. Technol., 2015, 31(2): 171-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||