J. Mater. Sci. Technol. ›› 2020, Vol. 55: 1-15.DOI: 10.1016/j.jmst.2020.01.001
• Invited Review • Next Articles
Huan Dua, Shihao Fenga, Wen Luoa,b,*(), Liang Zhoua, Liqiang Maia,*(
)
Received:
2019-05-21
Accepted:
2019-10-06
Published:
2020-10-15
Online:
2020-10-27
Contact:
Wen Luo,Liqiang Mai
About author:
Huan Du is currently an undergraduate student from the International School of Materials Science and Engineering (ISMSE) at Wuhan University of Technology (WUT) since 2016. He has joined the tutorial system of undergradu-ates at the WUT Nano Key Laboratory and studies in Mai Research Group. His research interests involves nanoma-terials and devices for energy storage.|Wen Luo received her Ph.D. degree in 2018 from the School of Materials Science and Engineering at Wuhan University of Technology under the supervision of Prof. Liqiang Mai. She was a visiting graduate stu-dent (2016-2017) in Prof. Jean-Jacques Gaumet Research Group at Université de Lorraine, France. She is currently an assistant professor at the Department of Physics, School of Science, Wuhan University of Technology. Her research focuses on nanomaterials and devices for energy storage and conversion.|Liqiang Mai is Chang Jiang Scholar Professor and Chair Professor of Materials Science and Engineering at Wuhan University of Technology (WUT). He is the winner of the National Natural Science Fund for Distinguished Young Scholars and Fellow of the Royal Society of Chemistry. He received his Ph.D. degree from WUT in 2004. He car-ried out his postdoctoral research in Prof. Zhonglin Wang’s group at Georgia Institute of Technology in 2006-2007. He worked as advanced research scholar in the laboratory of Prof. Charles M. Lieber at Harvard University in 2008-2011 and the laboratory of Prof. Peidong Yang at University of California, Berkeley in 2017. His current research interests focus on new nanomaterials for electrochemical energy storage and micro/nano energy devices.
Huan Du, Shihao Feng, Wen Luo, Liang Zhou, Liqiang Mai. Advanced Li-SexSy battery system: Electrodes and electrolytes[J]. J. Mater. Sci. Technol., 2020, 55: 1-15.
Fig. 2. (a) Mechanism of cathode phase transfer of Li?Se batteries in ether-based electrolytes [27]. (b) Schematic model of discharge reaction of SeS2@MCA cathode [29]. (c) Voltage curves of Li-Se battery in carbonate-based (GenII) and ether-based (D2) electrolytes [26]. (d) Cycling performance of Se2S5/MPC cathode at 0.1 C and (e) the binding energy of di?erent polyselenides with carbon matrixes [36].
Cathode material | Initial capacity (mA h g-1) | Capacity retention (mA h g-1) | Cycle No. | Rate | Coulombic efficiency | Electrolyte | Ref. |
---|---|---|---|---|---|---|---|
C-SeS2 | ~450 | 512 | 30 | 50 mA g-1 | - | 1.2 M LiPF6/EC-DMC | [ |
Se2S5/MPC | 1661.2 | 345.5 | 50 | 0.1 C | 94.1% | 1 M LITFSI in DOL/DME+0.1 M LiNO3 | [ |
CMK-3/SeS2@PDA | 800 | 350 | 500 | 2 A g-1 | ~100% | 1 M LiTFSI in DOL/DME+0.2 M LiNO3 | [ |
Se2S5/MCM | 1150.6 | 610 | 100 | 0.5 C | ~100% | 1 M LITFSI in DOL/DME | [ |
SeS2@MCA | 846 | 308 | 130 | 500 mA g-1 | - | 1 M LITFSI in DOL/DME+0.1 M LiNO3 | [ |
Se2S6/NMCs | ~1200 | 780 | 200 | 250 mA g-1 | 96.5% | 1 M LITFSI in DOL/DME | [ |
SeS2/HCS | 956 | 235.1 | 200 | 100 mA g-1 | 95.8% | 1 M LiPF6/EC + DEC | [ |
SeS2/DLHC | 990 | 930 | 100 | 200 mA g-1 | ~100% | 1 M LiPF6/EC-DEC-DMC | [ |
S0.6Se0.4@CNFs | ~500 | 346 | 1000 | 1A g-1 | ~100% | 1 M LiPF6/EC-DEC | [ |
S1-xSex/CNFs | ~1050 | ~600 | 50 | 0.05 C | >98% | 1 M LITFSI in DOL/DME+0.2 M LiNO3 | [ |
MWCNTS-SeS2 | ~1400 | 571 | 50 | 50 mA g-1 | ~100% | 1.0 M LiTFSI in DOL/DME | [ |
SexS8-x-M32/VACNTs | 1031 | ~800 | 500 | 500 mA g-1 | 93% | 1.0 M LiTFSI +0.1 M LiNO3 in DOL/DME | [ |
pPAN/SeS2 | 871 | 633 | 2000 | 4 A g-1 | - | 1 M LiPF6/EC-DEC | [ |
CPAN/SeS2 | ~800 | 780 | 1200 | 600 mA g-1 | ~100% | 1 M LiPF6/EC-DEC | [ |
CO-N-C/SeS2 | 1165.1 | 970.2 | 200 | 0.2 C | ~100% | 1 M LITFSI in DOL/DME | [ |
NiCo2S4@NC-SeS2 | 678.6 | 557 | 800 | 1 C | 98% | 1.0 M LiTFSI +0.1 M LiNO3 in DOL/DME | [ |
CoS2@LRC/SeS2 | 868 | 470 | 400 | 0.5 A g-1 | 97% | 1 M LITFSI in DOL/DME+0.1 M LiNO3 | [ |
HMC@TiN/ SeS2 | 987 | 690 | 200 | 0.2 C | ~99% | 1 M LITFSI in DOL/DME+0.2 M LiNO3 | [ |
SeS2-LPS-C | 889 | 782 | 50 | 50 mA g-1 | ~100% | All-solid-state electrolytes | [ |
Table 1 Summary of representative Li-SexSy batteries.
Cathode material | Initial capacity (mA h g-1) | Capacity retention (mA h g-1) | Cycle No. | Rate | Coulombic efficiency | Electrolyte | Ref. |
---|---|---|---|---|---|---|---|
C-SeS2 | ~450 | 512 | 30 | 50 mA g-1 | - | 1.2 M LiPF6/EC-DMC | [ |
Se2S5/MPC | 1661.2 | 345.5 | 50 | 0.1 C | 94.1% | 1 M LITFSI in DOL/DME+0.1 M LiNO3 | [ |
CMK-3/SeS2@PDA | 800 | 350 | 500 | 2 A g-1 | ~100% | 1 M LiTFSI in DOL/DME+0.2 M LiNO3 | [ |
Se2S5/MCM | 1150.6 | 610 | 100 | 0.5 C | ~100% | 1 M LITFSI in DOL/DME | [ |
SeS2@MCA | 846 | 308 | 130 | 500 mA g-1 | - | 1 M LITFSI in DOL/DME+0.1 M LiNO3 | [ |
Se2S6/NMCs | ~1200 | 780 | 200 | 250 mA g-1 | 96.5% | 1 M LITFSI in DOL/DME | [ |
SeS2/HCS | 956 | 235.1 | 200 | 100 mA g-1 | 95.8% | 1 M LiPF6/EC + DEC | [ |
SeS2/DLHC | 990 | 930 | 100 | 200 mA g-1 | ~100% | 1 M LiPF6/EC-DEC-DMC | [ |
S0.6Se0.4@CNFs | ~500 | 346 | 1000 | 1A g-1 | ~100% | 1 M LiPF6/EC-DEC | [ |
S1-xSex/CNFs | ~1050 | ~600 | 50 | 0.05 C | >98% | 1 M LITFSI in DOL/DME+0.2 M LiNO3 | [ |
MWCNTS-SeS2 | ~1400 | 571 | 50 | 50 mA g-1 | ~100% | 1.0 M LiTFSI in DOL/DME | [ |
SexS8-x-M32/VACNTs | 1031 | ~800 | 500 | 500 mA g-1 | 93% | 1.0 M LiTFSI +0.1 M LiNO3 in DOL/DME | [ |
pPAN/SeS2 | 871 | 633 | 2000 | 4 A g-1 | - | 1 M LiPF6/EC-DEC | [ |
CPAN/SeS2 | ~800 | 780 | 1200 | 600 mA g-1 | ~100% | 1 M LiPF6/EC-DEC | [ |
CO-N-C/SeS2 | 1165.1 | 970.2 | 200 | 0.2 C | ~100% | 1 M LITFSI in DOL/DME | [ |
NiCo2S4@NC-SeS2 | 678.6 | 557 | 800 | 1 C | 98% | 1.0 M LiTFSI +0.1 M LiNO3 in DOL/DME | [ |
CoS2@LRC/SeS2 | 868 | 470 | 400 | 0.5 A g-1 | 97% | 1 M LITFSI in DOL/DME+0.1 M LiNO3 | [ |
HMC@TiN/ SeS2 | 987 | 690 | 200 | 0.2 C | ~99% | 1 M LITFSI in DOL/DME+0.2 M LiNO3 | [ |
SeS2-LPS-C | 889 | 782 | 50 | 50 mA g-1 | ~100% | All-solid-state electrolytes | [ |
Fig. 3. (a) Cycling performance of Se2S5/MPC cathode at 0.5 C [36]. (b) TEM image of CMK-3/SeS2@PDA and (c) cycling performance of CMK-3/SeS2@PDA cathode at 0.2 A g-1 [52]. (d) SEM image of SeS2@MCA, (e) TGA curves of MCA and SeS2@MCA composites and (f) the discharge profile of SeS2@MCA cathode in the first cycle [29].
Fig. 4. (a) SEM image of Se2S6/NMC and schematic model of the Se2S6/NMC internal structure and (b) cycling performance of Se2S6/NMC at 250 mA g-1 [58]. (c) Schematic fabrication model of DLHC spheres and (d) cycling performance of SeS2/DLHC [65].
Fig. 5. (a) Schematic synthesis model and photograph of S1-xSex@CNFs composite, (b) SEM images of PAN (A) and S0.6Se0.4@CNFs (B), TEM (C) and HRTEM (D) images of S0.6Se0.4@CNFs and (c) cycling performance of S0.6Se0.4@CNFs at 1 A g-1 [69]. (d) SEM image of pPAN/SeS2, (e) cycling performance of pPAN/SeS2 battery at 0.5 A g-1 and (f) SEM images of 100 times cycled pPAN/SeS2 electrode films and separator and Li anode. Insets are EDX curves of separator, Li anode and cathode films, respectively [84].
Fig. 6. (a) SEM image of Co-N-C/SeS2, (b) cycling performance of SP/SeS2, SP-Co/SeS2 and Co-N-C/SeS2 at 0.2 C and (c) EIS curves of the SP/SeS2, SP-Co/SeS2 and Co?N?C/SeS2 after 200 cycles [94]. (d) TEM image of NiCo2S4@NC and (e) long-term cycling performances of NiCo2S4@NC-SeS2, NiCo2S4-SeS2 and NC-SeS2 cathodes at 1.0C [95]. (f) Schematic synthesis model of CoS2@LRC and advantages of CoS2@LRC/SeS2 over LRC/SeS2 [102]. (LiPSs: lithium polysulfides, LiPSes: lithium polyselenides) (g) Schematic synthesis model of HMC@TiN [104].
Fig. 7. (a) Cycling performance and (b) rate performance of Se4S5/MCM, Se2S5/MCM and SeS5/MCM [22]. (c) Cycling performance, (d) rate performances and (e) EIS test of SenS8-n/ NMC (n = 1-3) [58]. Cycling performance of (f) SeS2/C and (g) SeS7/C composite as cathodes [27]. (h) XRD patterns and (i) rate capability of the SexS8-x/VACNTs cathodes [77].
Fig. 8. (a) Elemental and (b) overlapped multi-elemental mappings after one cycle [53]. (c) Schematic model of AlCl3 additive in the electrolyte [124]. (d) K-edge measurement of Se2S5/MPC in carbonate-based electrolyte [36]. (e) Nyquist plots of Li-Se battery with carbonate-based (GenII) and ether-based (D2) electrolytes after 5 cycles [27].
Fig. 9. (a) In situ XANES pattern of Se2S5/MPC at 0.2 C for the ?rst and second cycle [36]. (b) dQ/dV differential curves of Se@N-CT-48 [47] (c) Schematic model of a typical all-solid-state electrochemical battery [141]. (d) Cycling performance of SeSx-LPS-C at 0.4 A g-1 [25]. (e) Voltage pro?les of Li-Se batteries in hybrid electrolytes and liquid electrolyte at 0.1 C [25].
[1] | J. Meng, H. Guo, C. Niu, Y. Zhao, L. Xu, Q. Li, L. Mai, Joule 1 (2017) 522-547. |
[2] |
L. Zhou, K. Zhang, Z. Hu, Z. Tao, L. Mai, Y.M. Kang, S.L. Chou, J. Chen, Adv. Energy Mater. 8 (2018), 1701415.
DOI URL |
[3] |
A.W. Anwar, A. Majeed, N. Iqbal, W. Ullah, A. Shuaib, U. Ilyas, F. Bibi, H.M. Rafique, J. Mater. Sci. Technol. 31 (2015) 699-707.
DOI URL |
[4] |
P.K. Choubey, K.S. Chung, M.S. Kim, J.C. Lee, R.R. Srivastava, Miner. Eng. 110 (2017) 104-121.
DOI URL |
[5] |
J. El Haddad, L. Canioni, B. Bousquet, Spectrochim. Acta B 101 (2014) 171-182.
DOI URL |
[6] | T.C. Nirmale, B.B. Kale, A.J. Varma, Int. J. Biol. Marcomol. 103 (2017) 1032-1043. |
[7] |
X. Zeng, J. Li, L. Liu, Renew Sust. Energ. Rev. 52 (2015) 1759-1767.
DOI URL |
[8] | W. Luo, J.J. Gaumet, L. Mai, Rare Met. 36 (2017) 321-338. |
[9] |
B.D. McCloskey, A. Speidel, R. Scheffler, D.C. Miller, V. Viswanathan, J.S. Hummelshoj, J.K. Norskov, A.C. Luntz, J. Phys. Chem. Lett. 3 (2012) 997-1001.
DOI URL PMID |
[10] | Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, Q. Zhang, P. Natl. Acad. Sci. USA 109 (2012) 19569-19574. |
[11] | J. Chen, R. Yuan, J. Feng, Q. Zhang, J. Huang, G. Fu, M. Zheng, B. Ren, Q. Dong, Chem. Mater. 27 (2015) 2048-2055. |
[12] | A. Eftekhari, D.W. Kim, J. Mater. Chem. A 5 (2017) 17734-17776. |
[13] | X. Liu, J. Huang, Q. Zhang, L. Mai, Adv. Mater. 29 (2017), 1601759. |
[14] | M.M. Thackeray, C. Wolverton, E.D. Isaacs, Energy Environ. Sci. 5 (2012) 7854. |
[15] | V.S. Saji, C.W. Lee, RSC Adv. 3 (2013) 10058. |
[16] | A. Eftekhari, Sustain. Energy Fuels 1 (2017) 14-29. |
[17] | J. Jin, X. Tian, N. Srikanth, L.B. Kong, K. Zhou, J. Mater. Chem. A 5 (2017) 10110-10126. |
[18] |
C. Yang, Y. Yin, Y. Guo, J. Phys. Chem. Lett. 6 (2015) 256-266.
DOI URL PMID |
[19] | Z. Zhang, Z. Zhang, K. Zhang, X. Yang, Q. Li, RSC Adv. 4 (2014) 15489-15492. |
[20] |
A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng, K. Amine, J. Am. Chem. Soc. 134 (2012) 4505-4508.
DOI URL PMID |
[21] | G.L. Xu, J. Liu, R. Amine, Z. Chen, K. Amine, ACS Energy Lett. 2 (2017) 605-614. |
[22] | Y. Wei, Y. Tao, Z. Kong, L. Liu, J. Wang, W. Qiao, L. Ling, D. Long, Energy Storage Mater. 5 (2016) 171-179. |
[23] | H. Liu, H. Yu, J. Mater. Sci. Technol. 35 (2019) 674-686. |
[24] | C. Barchasz, J.C. Leprêtre, S. Patoux, F. Alloin, Electrochim. Acta 89 (2013) 737-743. |
[25] | X. Li, J. Liang, J. Luo, C. Wang, X. Li, Q. Sun, R. Li, L. Zhang, R. Yang, S. Lu, H. Huang, X. Sun, Adv. Mater. 31 (2019), 1808100. |
[26] | Y. Cui, A. Abouimrane, C.J. Sun, Y. Ren, K. Amine, Chem. Commun. 50 (2014) 5576-5579. |
[27] |
Y. Cui, A. Abouimrane, J. Lu, T. Bolin, Y. Ren, W. Weng, C. Sun, V.A. Maroni, S.M. Heald, K. Amine, J. Am. Chem. Soc. 135 (2013) 8047-8056.
URL PMID |
[28] | B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci. 4 (2011) 3287-3295. |
[29] | Z. Zhang, S. Jiang, Y. Lai, J. Li, J. Song, J. Li, J. Power Sources 284 (2015) 95-102. |
[30] | J. Guo, Z. Wen, G. Ma, J. Jin, W. Wang, Y. Liu, RSC Adv. 5 (2015) 20346-20350. |
[31] | K. Han, Z. Liu, J. Shen, Y. Lin, F. Dai, H. Ye, Adv. Funct. Mater. 25 (2015) 455-463. |
[32] | S. Jiang, Z. Zhang, Y. Lai, Y. Qu, X. Wang, J. Li, J. Power Sources 267 (2014) 394-404. |
[33] | Y. Qu, Z. Zhang, Y. Lai, Y. Liu, J. Li, Solid State Ionics 274 (2015) 71-76. |
[34] | X. Wang, Z. Zhang, X. Yan, Y. Qu, Y. Lai, J. Li, Electrochim. Acta 155 (2015) 54-60. |
[35] | Z. Zhang, X. Yang, X. Wang, Q. Li, Z. Zhang, Solid State Ionics 260 (2014) 101-106. |
[36] |
G. Xu, T. Ma, C. Sun, C. Luo, L. Cheng, Y. Ren, S.M. Heald, C. Wang, L. Curtiss, J. Wen, D.J. Miller, T. Li, X. Zuo, V. Petkov, Z. Chen, K. Amine, Nano Lett. 16 (2016) 2663-2673.
DOI URL PMID |
[37] | S. Chen, Y. Zhai, G. Xu, Y. Jiang, D. Zhao, J. Li, L. Huang, S. Sun, Electrochim.Acta 56 (2011) 9549-9555. |
[38] |
Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang, Y. Cui, Nano Lett. 15 (2015) 3780-3786.
DOI URL PMID |
[39] |
H. Chen, C. Wang, W. Dong, W. Lu, Z. Du, L. Chen, Nano Lett. 15 (2015) 798-802.
DOI URL PMID |
[40] |
L. Fei, X. Li, W. Bi, Z. Zhuo, W. Wei, L. Sun, W. Lu, X. Wu, K. Xie, C. Wu, H.L. Chan, Y. Wang, Adv. Mater. 27 (2015) 5936-5942.
DOI URL PMID |
[41] |
M. Ge, J. Rong, X. Fang, C. Zhou, Nano Lett. 12 (2012) 2318-2323.
URL PMID |
[42] |
W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A.A. Elzatahry, Y. Xia, D. Zhao, J. Am. Chem. Soc. 135 (2013) 18300-18303.
DOI URL PMID |
[43] |
J. Liu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Nano Lett. 14 (2014) 2597-2603.
DOI URL PMID |
[44] | M. Jia, Y. Niu, C. Mao, S. Liu, Y. Zhang, S.J. Bao, M. Xu, J. Colloid. Interf. Sci. 490 (2017) 747-753. |
[45] | C. Zhao, S. Fang, Z. Hu, S. Qiu, K. Liu, J. Colloid. Interf. Sci. 18 (2016) 201. |
[46] | B. Zhang, X. Qin, G.R. Li, X. Gao, Energy Environ. Sci. 3 (2010) 1531. |
[47] | D.B. Babu, K. Ramesha, Electrochim. Acta 219 (2016) 295-304. |
[48] |
S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou, Y.G. Guo, L.J. Wan, J. Am. Chem. Soc. 134 (2012) 18510-18513.
DOI URL PMID |
[49] | Y. Liu, L. Si, X. Zhou, X. Liu, Y. Xu, J. Bao, Z. Dai, J. Mater. Chem. A 2 (2014) 17735-17739. |
[50] | Y. Liu, X. Zhao, G.S. Chauhan, J.H. Ahn, Appl. Surf. Sci. 380 (2016) 151-158. |
[51] | X. Li, Y. Cao, W. Qi, L.V. Saraf, J. Xiao, Z. Nie, J. Mietek, J. Zhang, B. Schwenzer, J. Liu, J. Mater. Chem. 21 (2011) 16603. |
[52] | Z. Li, J. Zhang, H. Wu, X. Lou, Adv. Energy Mater. 7 (2017), 1700281. |
[53] | Z. Li, L. Yuan, Z. Yi, Y. Liu, Y. Huang, Nano. Energy 9 (2014) 229-236. |
[54] | X. Li, J. Liang, K. Zhang, Z. Hou, W. Zhang, Y. Zhu, Y. Qian, Energy Environ. Sci. 8 (2015) 3181-3186. |
[55] | N. Liu, J. Shen, D. Liu, Electrochim. Acta 97 (2013) 271-277. |
[56] | J. Wang, S. Kaskel, J. Mater. Chem. 22 (2012) 23710. |
[57] | Z. Zhang, Z. Li, F. Hao, X. Wang, Q. Li, Y. Qi, R. Fan, L. Yin, Adv. Funct. Mater. 24 (2014) 2500-2509. |
[58] | F. Sun, H. Cheng, J. Chen, N. Zheng, Y. Li, J. Shi, ACS Nano 10 (2016) 8289-8298. |
[59] |
G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Nano Lett. 11 (2011) 4462-4467.
DOI URL PMID |
[60] | S. Chen, X. Huang, B. Sun, J. Zhang, H. Liu, G. Wang, J. Mater. Chem. A 2 (2014) 16199-16207. |
[61] | N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Angew. Chem. Int. Edit. 50 (2011) 5904-5908. |
[62] | C. Zhang, C. Yuan, Z. Guo, X. Lou, Angew. Chem. Int. Edit. 51 (2012) 9592-9595. |
[63] |
G. He, X. Liang, M. Cuisinier, A. Garsuch, L.F. Nazar, ACS Nano 7 (2013) 10920-10930.
DOI URL PMID |
[64] | W. Luo, D. Guan, R. He, F. Li, L. Mai, Acta. Phys.-Chim. Sin. 32 (2016) 1999-2006. |
[65] | H. Zhang, L. Zhou, X. Huang, H. Song, C. Yu, Nano Res. 9 (2016) 3725-3734. |
[66] | K. Balakumar, N. Kalaiselvi, Carbon 112 (2017) 79-90. |
[67] | X. Wang, Z. Zhang, Y. Qu, G. Wang, Y. Lai, J. Li, J. Power Sources 287 (2015) 247-252. |
[68] | L. Zeng, W. Li, Y. Jiang, Y. Yu, Rare Met. 36 (2017) 339-364. |
[69] | Y. Yao, L. Zeng, S. Hu, Y. Jiang, B. Yuan, Y. Yu, Small 13 (2017), 1603513. |
[70] | C. Liang, N.J. Dudney, J.Y. Howe, Chem. Mater. 21 (2009) 4724-4730. |
[71] |
T.H. Hwang, D.S. Jung, J.S. Kim, B.G. Kim, J.W. Choi, Nano Lett. 13 (2013) 4532-4538.
DOI URL PMID |
[72] |
G.P. Pandey, K. Jones, L. Meda, MRS Adv. 4 (2019) 821-828.
DOI URL |
[73] |
J. Meng, C. Niu, L. Xu, J. Li, X. Liu, X. Wang, Y. Wu, X. Xu, W. Chen, Q. Li, Z. Zhu, D. Zhao, L. Mai, J. Am. Chem. Soc. 139 (2017) 8212-8221.
DOI URL PMID |
[74] | J.A. Syed, J. Ma, B. Zhu, S. Tang, X. Meng, Adv. Energy Mater. 7 (2017), 1701228. |
[75] |
G. Tan, F. Wu, Y. Yuan, R. Chen, T. Zhao, Y. Yao, J. Qian, J. Liu, Y. Ye, R. Shahbazian-Yassar, J. Lu, K. Amine, Nat. Commun. 7 (2016) 11774.
DOI URL PMID |
[76] |
C. Tang, Q. Zhang, M. Zhao, J. Huang, X. Cheng, G. Tian, H. Peng, F. Wei, Adv. Mater. 26 (2014) 6100-6105.
DOI URL PMID |
[77] | H. Fan, S. Chen, X. Chen, Q. Tang, A. Hu, W. Luo, H. Liu, S. Dou, Adv. Funct. Mater. 28 (2018), 1805018. |
[78] | D. Kundu, F. Krumeich, R. Nesper, J. Power Sources 236 (2013) 112-117. |
[79] | J. Zhang, Y. Xu, L. Fan, Y. Zhu, J. Liang, Y. Qian, Nano Energy 13 (2015) 592-600. |
[80] |
J. Wang, Y. He, J. Yang, Adv. Mater. 27 (2015) 569-575.
URL PMID |
[81] | L. Wang, X. He, J. Li, J. Gao, J. Guo, C. Jiang, C. Wan, J. Mater. Chem. 22 (2012) 22077. |
[82] | J. Fanous, M. Wegner, J. Grimminger, Ä. Andresen, M.R. Buchmeiser, Chem. Mater. 23 (2011) 5024-5028. |
[83] | S.S. Zhang, Front. Energy Res. 1 (2013) 1-9. |
[84] |
Z. Li, Y. Lu, X. Lou, Sci. Adv. 4 (2018), eaat1687.
DOI URL PMID |
[85] |
J. Fanous, J. Grimminger, M. Rolff, M.B.M. Spera, M. Tenzerb, M.R. Buchmeiser, J. Mater. Chem. 22 (2012) 23240.
DOI URL |
[86] | J. Wang, C. Wan, K. Du, J. Xie, N. Xu, Adv. Funct. Mater. 13 (2003) 487-492. |
[87] | L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Energ. Environ. Sci. 5 (2012) 6966. |
[88] | J. Guo, Z. Yang, Y. Yu, H.D. Abruna, L.A. Archer, J. Am. Chem. Soc. 135 (2013) 763-767. |
[89] | C. Luo, Y. Wen, J. Wang, C. Wang, Adv. Funct. Mater. 24 (2014) 4082-4089. |
[90] | L. Liu, Y. Wei, C. Zhang, C. Zhang, X. Li, J. Wang, L. Ling, W. Qiao, D. Long, Electrochim. Acta 153 (2015) 140-148. |
[91] | Z. Yi, L. Yuan, D. Sun, Z. Li, C. Wu, W. Yang, Y. Wen, B. Shan, Y. Huang, J. Mater. Chem. A 3 (2015) 3059-3065. |
[92] | Z. Li, L. Yin, Nanoscale 7 (2015) 9597-9606. |
[93] | J. He, W. Lv, Y. Chen, J. Xiong, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, J. Power Sources 363 (2017) 103-109. |
[94] | J. He, Y. Chen, J. Xiong, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, J. Mater. Chem. A 6 (2018) 10466-10473. |
[95] | B. Guo, T. Yang, W. Du, Q. Ma, L. Zhang, S. Bao, X. Li, Y. Chen, M. Xu, J. Mater. Chem. A 7 (2019) 12276-12282. |
[96] | D. Huang, S. Li, Y. Luo, X. Xiao, L. Gao, M. Wang, Y. Shen, Electrochim. Acta 190 (2016) 258-263. |
[97] | Q. Cai, Y. Li, L. wang, Q. Li, J. Xu, B. Gao, X. Zhang, K. Huo, P.K. Chu, Nano Energy 32 (2017) 1-9. |
[98] | K. Han, Z. Liu, H. Ye, F. Dai, J. Power Sources 263 (2014) 85-89. |
[99] | J. He, Y. Chen, W. Lv, K. Wen, P. Li, Z. Wang, W. Zhang, W. Qin, W. He, ACS Energy Lett. 1 (2016) 16-20. |
[100] | L. Zeng, X. Wei, J. Wang, Y. Jiang, W. Li, Y. Yu, J. Power Sources 281 (2015) 461-469. |
[101] |
L. Xu, Z. Jiang, L. Mai, Q. Qing, Nano Lett. 14 (2014) 3602-3607.
DOI URL PMID |
[102] | J. Zhang, Z. Li, X. Lou, Angew. Chem. Int. Edit. 56 (2017) 14107-14112. |
[103] | Z. Li, Q. He, X. Xu, Y. Zhao, X. Liu, C. Zhou, D. Ai, L. Xia, L. Mai, Adv. Mater. 30 (2018), 1804089. |
[104] | Z. Li, J. Zhang, B. Guan, X. Lou, Angew. Chem. Int. Edit. 56 (2017) 16003-16007. |
[105] | Z. Cui, C. Zu, W. Zhou, A. Manthiram, J.B. Goodenough, Adv. Mater. 28 (2016) 6926-6931. |
[106] | Z. Hao, L. Yuan, C. Chen, J. Xiang, Y. Li, Z. Huang, P. Hu, Y. Huang, J. Mater. Chem. A 4 (2016) 17711-17717. |
[107] | T.G. Jeong, D.S. Choi, H. Song, J. Choi, S.A. Park, S.H. Oh, H. Kim, Y. Jung, Y.T. Kim, ACS Energy Lett. 2 (2017) 327-333. |
[108] | D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C.S. Kelley, J. Affinito, J.Electro Chem. Soc. 156 (2009) A694-A702. |
[109] |
X. Li, A. Lushington, Q. Sun, W. Xiao, J. Liu, B. Wang, Y. Ye, K. Nie, Y. Hu, Q. Xiao, R. Li, J. Guo, T.K. Sham, X. Sun, Nano Lett. 16 (2016) 3545-3549.
DOI URL PMID |
[110] | J. Gao, M.A. Lowe, Y. Kiya, H.D. Abruñna, J. Phys. Chem. C 115 (2011) 25132-25137. |
[111] | T. Yim, M.S. Park, J.S. Yu, K.J. Kim, K.Y. Im, J.H. Kim, G. Jeong, Y.N. Jo, S.G. Woo, K.S. Kang, I. Lee, Y.J. Kim, Electrochim. Acta 107 (2013) 454-460. |
[112] | C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, J. Power Sources 189 (2009) 1132-1140. |
[113] |
E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 40 (2011) 2525.
DOI URL PMID |
[114] | C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Nano Energy 33 (2017) 363-386. |
[115] |
Y. Lu, S.K. Das, S.S. Moganty, L.A. Archer, Adv. Mater. 24 (2012) 4430-4435.
URL PMID |
[116] | Y. Lu, K. Korf, Y. Kambe, Z. Tu, L.A. Archer, Angew. Chem. Int. Edit. 53 (2014) 488-492. |
[117] | Y. Wang, P. He, H. Zhou, Energ. Environ. Sci. 4 (2011) 4994. |
[118] | C. Yang, Y. Yin, H. Ye, J. Zhang, Y. Guo, Angew. Chem. Int. Edit. 52 (2013) 8263-8367. |
[119] | H. Ye, Y. Yin, S. Zhang, Y. Guo, J. Mater. Chem. A 2 (2014) 13293. |
[120] | D. Aurbach, J. Power Sources 89 (2000) 206-218. |
[121] | J. Qian, W. Xu, P. Bhattacharya, M. Engelhard, W.A. Henderson, Y. Zhang, J. Zhang, Nano Energy 15 (2015) 135-144. |
[122] | X. Zhang, X. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 27 (2017), 1605989. |
[123] | X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Electro. Chem. Energ. Rev. 1 (2018) 239-293. |
[124] | H. Ye, Y. Yin, S. Zhang, Y. Shi, L. Liu, X. Zeng, R. Wen, Y. Guo, L. Wan, Nano Energy 36 (2017) 411-417. |
[125] | Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu, Y. Jiang, Y. Shen, Y. Xin, Z. Zhang, Y. Huang, Adv. Energy Mater. 4 (2014), 1301473. |
[126] | P.W. Ruch, D. Cericola, A. Foelske, R. Kötz, A. Wokaun, Electrochim. Acta 55 (2010) 2352-2357. |
[127] | Y. Tominaga, K. Yamazaki, Chem. Commun. 50 (2014) 4448-4450. |
[128] | S. Das, J. Højberg, K.B. Knudsen, R. Younesi, P. Johansson, P. Norby, T. Vegge, J. Phys. Chem. C 119 (2015) 18084-18090. |
[129] | K. Kim, I. Park, S.Y. Ha, Y. Kim, M.H. Woo, M.H. Jeong, W.C. Shin, M. Ue, S.Y. Hong, N.S. Choi, Electrochim. Acta 225 (2017) 358-368. |
[130] | B. Li, M. Xu, T. Li, W. Li, S. Hu, Electro Chem. Commun. 17 (2012) 92-95. |
[131] | L. Ma, H. Zhuang, Y. Lu, S.S. Moganty, R.G. Hennig, L.A. Archer, Adv. Energy Mater. 4 (2014), 1400390. |
[132] | Y. Liu, L. Si, Y. Du, X. Zhou, Z. Dai, J. Bao, J. Phys. Chem. C 119 (2015) 27316-27321. |
[133] |
Y. Liu, L. Si, X. Zhou, X. Liu, Y. Xu, J. Bao, Z. Dai, J. Mater. Chem. A 2 (2014) 17735-17739.
DOI URL |
[134] |
R. Fang, G. Zhou, S. Pei, F. Li, H. Cheng, Chem. Commun. 51 (2015) 3667-3670.
DOI URL |
[135] |
Y. Yamada, A. Yamada, J. Electro Chem. Soc. 162 (2015) A2406-A2423.
DOI URL |
[136] | J.T. Lee, H. Kim, M. Oschatz, D.C. Lee, F. Wu, H.T. Lin, B. Zdyrko, W.I. Cho, S. Kaskel, G. Yushin, Adv. Energy Mater. 5 (2015), 1400981. |
[137] | A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, M. Tatsumisago, J. Power Sources 183 (2008) 422-426. |
[138] | P.H.L. Notten, F. Roozeboom, R.A. H. Niessen, L. Baggetto, Adv. Mater. 19 (2007) 4564-4567. |
[139] |
A. Sakuda, A. Hayashi, M. Tatsumisago, Sci. Rep. 3 (2013) 2261.
DOI URL PMID |
[140] | X. Li, J. Liang, X. Li, C. Wang, J. Luo, R. Li, X. Sun, Energy Environ. Sci. 11 (2018) 2828-2832. |
[141] | M. Tatsumisago, M. Nagao, A. Hayashi, J. Am. Ceram. Soc. 1 (2018) 17-25. |
[142] |
Q. Pan, D.M. Smith, H. Qi, S. Wang, C.Y. Li, Adv. Mater. 27 (2015) 5995-6001.
DOI URL PMID |
[143] |
Q. Wang, J. Jin, X. Wu, G. Ma, J. Yang, Z. Wen, Phys. Chem. Chem. Phys. 16 (2014) 21225-21229.
DOI URL PMID |
[144] | P.V. Wright, MRS Bull. 27 (2011) 597-602. |
[145] | C. Wang, Q. Sun, Y. Liu, Y. Zhao, X. Lia, X. Lin, M.N. Banis, M. Li, W. Li, K.R. Adair, D. Wang, J. Liang, R. Li, L. Zhang, R. Yang, S. Lu, X. Sun, Nano Energy 48 (2018) 35-43. |
[146] | Y. Zhou, Z. Li, Y. Lu, Nano Energy 39 (2017) 554-561. |
[147] |
F. Wu, J.T. Lee, N. Nitta, H. Kim, O. Borodin, G. Yushin, Adv. Mater. 27 (2015) 101-108.
DOI URL PMID |
[148] | S.S. Zhang, J. Power Sources 162 (2006) 1379-1394. |
[149] | F.Cd. Godoi, D.W. Wang, Q. Zeng, K.H. Wu, I.R. Gentle, J. Power Sources 288 (2015) 13-19. |
[150] | A. Rosenman, R. Elazari, G. Salitra, E. Markevich, D. Aurbach, A. Garsuch, J. Electro Chem. Soc. 162 (2015) A470-A473. |
[151] | S.S. Zhang, Electrochim. Acta 70 (2012) 344-348. |
[152] | J.Q. Huang, Z.L. Xu, S. Abouali, M. Akbari Garakani, J.K. Kim, Carbon 99 (2016) 624-632. |
[153] | L.-B. Xing, K. Xi, Q. Li, Z. Su, C. Lai, X. Zhao, R.V. Kumar, J. Power Sources 303 (2016) 22-28. |
[154] | L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.C. Cao, F. Wei, L. Mai, Joule 2 (2018) 1991-2015. |
[155] | C. Zu, Y.S. Su, Y. Fu, A. Manthiram, Phys. Chem. Chem. Phys. 15 (2013) 2291-2297. |
[156] | E.C. Cengiz, O. Ozturk, S.H. Soytas, R. Demir-Cakan, J. Power Sources 412 (2019) 472-479. |
[157] | X. Gu, C.J. Tong, S. Rehman, L.M. Liu, Y. Hou, S. Zhang, ACS Appl. Mater. Int. 8 (2016) 15991-16001. |
[158] | J. Li, Y. Yuan, H. Jin, H. Lu, A. Liu, D. Yin, J. Wang, J. Lu, S. Wang, Energy Storage Mater. 16 (2019) 31-36. |
[1] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[2] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
[3] | Haonan Cao, Meiqi Yu, Long Zhang, Zhaoxing Zhang, Xinlin Yan, Peng Li, Chuang Yu. Stabilizing Na3SbS4/Na interface by rational design via Cl doping and aqueous processing [J]. J. Mater. Sci. Technol., 2021, 70(0): 168-175. |
[4] | Zhenya Luo, Xiao Wang, Weixin Lei, Pengtao Xia, Yong Pan. Confining sulfur in sandwich structure of bamboo charcoal and aluminum fluoride (BC@S@AlF3) as a long cycle performance cathode for Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 159-166. |
[5] | Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao. Progress in electrolytes for beyond-lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 44(0): 237-257. |
[6] | Xianbin Liu, Zechen Xiao, Changgan Lai, Shuai Zou, Ming Zhang, Kaixi Liu, Yanhong Yin, Tongxiang Liang, Ziping Wu. Three-dimensional carbon framework as high-proportion sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2020, 48(0): 84-91. |
[7] | Na Li, Fei Chen, Xiangtao Chen, Zhongxu Chen, Yang Qi, Xiaodong Li, Xudong Sun. A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 152-158. |
[8] | Jian TU, Xinbing ZHAO, Gaoshao CAO, Tiejun ZHU, Dagao ZHUANG, Jiangping TU. Electrochemical Performance of Surface-Modified LiMn2O4 Prepared by a Melting Impregnation Method [J]. J. Mater. Sci. Technol., 2006, 22(04): 433-436. |
[9] | Xianjun ZHU, Pingchu CHEN, Hui ZHAN, Yunhong ZHOU. Synthesis and Characterization of LiNi0.85Co0.15-xAlxO2 as Cathode Materials for Lithium-ion Batteries [J]. J Mater Sci Technol, 2006, 22(01): 35-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||