J. Mater. Sci. Technol. ›› 2020, Vol. 54: 77-86.DOI: 10.1016/j.jmst.2020.02.080
• Research Article • Previous Articles Next Articles
Yongqiang Liua,b, Xin Wangb, Jiyu Caib, Xiaoxiao Hanb, Dongsheng Genga,*(), Jianlin Lic,*(
), Xiangbo Mengb,*
Received:
2020-02-10
Revised:
2020-02-26
Accepted:
2020-02-26
Published:
2020-10-01
Online:
2020-10-21
Contact:
Dongsheng Geng,Jianlin Li,Xiangbo Meng
Yongqiang Liu, Xin Wang, Jiyu Cai, Xiaoxiao Han, Dongsheng Geng, Jianlin Li, Xiangbo Meng. Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in lithium-ion batteries[J]. J. Mater. Sci. Technol., 2020, 54: 77-86.
Fig. 1. (a) Simple schematic illustration of the ALD ZrO2 deposition steps; (b) Enlarged three consecutive cycles for in-situ QCM measurements of ALD ZrO2; SEM images of (c) bare NGS and ALD-coated NGS with (d) 100 and (e) 200 cycles of ZrO2 at 100 °C.
Fig. 3. (a) Synchrotron-based powder XRD patterns of the bare, ALD-20, and ALD-40 cathodes. (b) Comparison of the bare, ALD-20, and ALD-40 cathodes for the XRD peaks of (003), (006)/(102) and (108)/(110).
Sample | a/b (?) | c (?) | I003/I104 | (I106 + I102)/I101 |
---|---|---|---|---|
Bare | 2.8965 | 14.3208 | 1.3799 | 0.6339 |
ALD-20 | 2.9036 | 14.3231 | 1.3803 | 0.5192 |
ALD-40 | 2.9102 | 14.3915 | 1.4399 | 0.5431 |
Table 1 Lattice parameters and relative intensities of the bare and ZrO2-coated samples calculated from XRD measurement.
Sample | a/b (?) | c (?) | I003/I104 | (I106 + I102)/I101 |
---|---|---|---|---|
Bare | 2.8965 | 14.3208 | 1.3799 | 0.6339 |
ALD-20 | 2.9036 | 14.3231 | 1.3803 | 0.5192 |
ALD-40 | 2.9102 | 14.3915 | 1.4399 | 0.5431 |
Fig. 4. (a) The cycling performances at 0.5 C rate and (b) rate capacity at various current densities of the bare and different cycles ZrO2 coated cathodes measured in a voltage range of 3.0-4.5 V. The charge/discharge capacities of (c, d) the bare and (e, f) ALD-20 cathodes, in which (c) and (e) are the as-measured capacities while (d) and (f) are the normalized capacities.
Fig. 5. The cycle performance of the bare and ALD-20 NMC622 electrodes at 3 C rate in the range of 3.0-4.5 V: (a, b) the charge-discharge profiles for (a) ALD-20 and (b) bare NMC622 cathodes; (c) cyclability.
Fig. 6. Nyquist plots of the bare and ALD-20 NMC622/Li half-cells at 4.5 V vs. Li/Li+ as a function of cycle number at 0.5 C for (a) the 1st cycle, (b) the 30th cycle, and (c) the 50th cycle. (d) The equivalent circuit employed for simulating EIS in (a)-(c). (e) Charge-transfer resistance (Rct) and (f) surface film resistance (Rs) as a function of charge-discharge cycle number.
This work | Reported in references | |||||
---|---|---|---|---|---|---|
Bare | ALD-20 | |||||
Peak | Chem. bond | Assignment | BE (eV) | BE (eV) | BE ± σmax (eV) | Ref. |
C1s | C—C | Carbon black | 284.2 | 284.2 | [ | |
Aliphatic chain | 284.8 | 284.8 | 284.7 | [ | ||
C—O | C—O—C | 285.8 | 285.8 | 285.8 ± 0.2 | [ | |
C=O | Li2CO3 | 289 | 289 | [ | ||
Li2CO3 | 289.4 | 289.6 ± 0.3 | [ | |||
C—F | PVDF | 290.6 | 290.7 | [ | ||
O1s | C—O | C—OH | 532.9 | 532.9 | [ | |
533.6 | 533.7 | [ | ||||
C=O | Li2CO3 | 531.4 | 531.6 | [ | ||
Li2CO3 | 532 | 532 | [ | |||
Co—O | CoOx(OH)y | 528.6 | 529 | [ | ||
F1s | C—F | PVDF | 687.8 | 687.8 | 688 | [ |
O—P—F | LixPOyFz | 685.6 | 685.6 | 685.6 | [ | |
Li—F | LiF | 685 | 685 | [ | ||
LiF | 684.6 | 684.5 | [ | |||
Zr—F | ZrF4 | 685.4 | 685.5 ± 0.1 | [ |
Table 2 C1s, O1s, and F1s XPS spectral assignment of the bare and ALD-20 cathode surface after 50 cycles in the voltage range of 3.0-4.5 V. The binding energies (BE), chemical bond, and the corresponding components are given [[91], [92], [93], [94], [95], [96], [97], [98], [99], [100]].
This work | Reported in references | |||||
---|---|---|---|---|---|---|
Bare | ALD-20 | |||||
Peak | Chem. bond | Assignment | BE (eV) | BE (eV) | BE ± σmax (eV) | Ref. |
C1s | C—C | Carbon black | 284.2 | 284.2 | [ | |
Aliphatic chain | 284.8 | 284.8 | 284.7 | [ | ||
C—O | C—O—C | 285.8 | 285.8 | 285.8 ± 0.2 | [ | |
C=O | Li2CO3 | 289 | 289 | [ | ||
Li2CO3 | 289.4 | 289.6 ± 0.3 | [ | |||
C—F | PVDF | 290.6 | 290.7 | [ | ||
O1s | C—O | C—OH | 532.9 | 532.9 | [ | |
533.6 | 533.7 | [ | ||||
C=O | Li2CO3 | 531.4 | 531.6 | [ | ||
Li2CO3 | 532 | 532 | [ | |||
Co—O | CoOx(OH)y | 528.6 | 529 | [ | ||
F1s | C—F | PVDF | 687.8 | 687.8 | 688 | [ |
O—P—F | LixPOyFz | 685.6 | 685.6 | 685.6 | [ | |
Li—F | LiF | 685 | 685 | [ | ||
LiF | 684.6 | 684.5 | [ | |||
Zr—F | ZrF4 | 685.4 | 685.5 ± 0.1 | [ |
[1] | R. Van Noorden, Nat. News 507 (2014) 26. |
[2] | A. Manthiram, ACS Cent. Sci. 3 (2017) 1063-1069. |
[3] | A. Manthiram, J.C. Knight, S.T. Myung, S.M. Oh, Y.K. Sun, Adv. Energy Mater. 6 (2016), 1501010. |
[4] | S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, Y.K. Sun, ACSEnergy Lett. 2 (2016) 196-223. |
[5] |
J. Kim, H. Lee, H. Cha, M. Yoon, M. Park, J. Cho, Adv. Energy Mater. 8 (2018), 1702028.
DOI URL |
[6] | D.J. Miller, C. Proff, J. Wen, D.P. Abraham, J. Bare˜no, Adv. Energy Mater. 3 (2013) 1098-1103. |
[7] | S. Hwang, W. Chang, S.M. Kim, D. Su, D.H. Kim, J.Y. Lee, K.Y. Chung, E.A. Stach, Chem. Mater. 26 (2014) 1084-1092. |
[8] |
P. Yan, J. Zheng, D. Lv, Y. Wei, J. Zheng, Z. Wang, S. Kuppan, J. Yu, L. Luo, D. Edwards, Chem. Mater. 27 (2015) 5393-5401.
DOI URL |
[9] | F. Lin, D. Nordlund, Y. Li, M.K. Quan, L. Cheng, T.C. Weng, Y. Liu, H.L. Xin, M.M. Doeff, Nat. Energy 1 (2016) 15004. |
[10] | D. Abraham, R. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, K. Amine, Electrochem. Commun. 4 (2002) 620-625. |
[11] | H. Gao, J. Cai, G.L. Xu, L. Li, Y. Ren, X. Meng, K. Amine, Z. Chen, Chem. Mater. 31 (2019) 2723-2730. |
[12] |
F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta, H.L. Xin, M.M. Doeff, Nat. Commun. 5 (2014) 3529.
URL PMID |
[13] | M. Evertz, F. Horsthemke, J. Kasnatscheew, M. Börner, M. Winter, S. Nowak, J. Power Sources 329 (2016) 364-371. |
[14] | D.R. Gallus, R. Wagner, S.W. Meyer, M. Winter, I.C. Laskovic, Electrochim. Acta 184 (2015) 410-416. |
[15] | X. Zhang, W. Jiang, A. Mauger, J. Power Sources 195 (2010) 1292-1301. |
[16] | S.T. Myung, S. Komaba, K. Kurihara, K. Hosoya, N. Kumagai, Y.K. Sun, I. Nakai, M. Yonemura, T. Kamiyama, Chem. Mater. 18 (2006) 1658-1666. |
[17] | M. He, C.C. Su, Z. Feng, L. Zeng, T. Wu, M.J. Bedzyk, P. Fenter, Y. Wang, Z. Zhang, Adv. Energy Mater. 7 (2017), 1700109. |
[18] | J. Im, J. Lee, M.H. Ryou, Y.M. Lee, K.Y. Cho, J. Electrochem. Soc. 164 (2017) A6381-A6385. |
[19] | K.C. Kam, M.M. Doeff, J. Mater. Chem. 21 (2011) 9991-9993. |
[20] | Z. Liu, H. Zhen, Y. Kim, C. Liang, J. Power Sources 196 (2011) 10201-10206. |
[21] | P. Cui, Z. Jia, L. Li, T. He, J. Phys. Chem. Solids 72 (2011) 899-903. |
[22] | S. Muto, K. Tatsumi, Y. Kojima, H. Oka, H. Kondo, K. Horibuchi, Y. Ukyo, J. Power Sources 205 (2012) 449-455. |
[23] | X. Li, H. Peng, M.S. Wang, X. Zhao, P.X. Huang, W. Yang, J. Xu, Z.Q. Wang, M.Z. Qu, Z.L. Yu, ChemElectroChem 3 (2016) 130-137. |
[24] | S.K. Hu, G.H. Cheng, M.Y. Cheng, B.J. Hwang, R. Santhanam, J. Power Sources 188 (2009) 564-569. |
[25] |
K. Park, J.H. Park, S.G. Hong, B. Choi, S.W. Seo, J.H. Park, K. Min, Phys. Chem. Chem. Phys. 18 (2016) 29076-29085.
DOI URL PMID |
[26] | J. Ahn, E.K. Jang, S. Yoon, S.J. Lee, S.J. Sung, D.H. Kim, K.Y. Cho, Appl. Surf. Sci. 484 (2019) 701-709. |
[1] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[2] | Lei Hu, Fuxin Wang, M.-Sadeeq Balogun, Yexiang Tong. Hollow Co2P/Co-carbon-based hybrids for lithium storage with improved pseudocapacitance and water oxidation anodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 203-211. |
[3] | Wang Zhongren, Gao Quanbin, Lv Peng, Li Xiuwan, Wang Xinghui, Qu Baihua. Facile fabrication of core-shell Ni3Se2/Ni nanofoams composites for lithium ion battery anodes [J]. J. Mater. Sci. Technol., 2020, 38(0): 119-124. |
[4] | Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 173-181. |
[5] | Zhaoruxin Guan, Xiaoxue Wang, Tingting Li, Qizhen Zhu, Mengqiu Jia, Bin Xu. Facile synthesis of rutile TiO2/carbon nanosheet composite from MAX phase for lithium storage [J]. J. Mater. Sci. Technol., 2019, 35(9): 1977-1981. |
[6] | Linxing Meng, Wei Tian, Fangli Wu, Fengren Cao, Liang Li. TiO2 ALD decorated CuO/BiVO4 p-n heterojunction for improved photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2019, 35(8): 1740-1746. |
[7] | Igor Iatsunskyi, Margarita Baitimirova, Emerson Coy, Luis Yate, Roman Viter, Arunas Ramanavicius, Stefan Jurga, Mikhael Bechelany, Donats Erts. Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties [J]. J. Mater. Sci. Technol., 2018, 34(9): 1487-1493. |
[8] | Zhong Haoxiang, Lu Jidian, He Aiqin, Sun Minghao, He Jiarong, Zhang Lingzhi. Carboxymethyl chitosan/poly(ethylene oxide) water soluble binder: Challenging application for 5 V LiNi0.5Mn1.5O4 cathode [J]. J. Mater. Sci. Technol., 2017, 33(8): 763-767. |
[9] | Jin Yan, Zhao Chongchong, Lin Yichao, Wang Deyu, Chen Liang, Shen Cai. Fe-Based Metal-Organic Framework and Its Derivatives for Reversible Lithium Storage [J]. J. Mater. Sci. Technol., 2017, 33(8): 768-774. |
[10] | Gao Juan, He Gang, Xiao Dongqi, Jin Peng, Jiang Shanshan, Li Wendong, Liang Shuang, Zhu Li. Passivation of Ge surface treated with trimethylaluminum and investigation of electrical properties of HfTiO/Ge gate stacks [J]. J. Mater. Sci. Technol., 2017, 33(8): 901-906. |
[11] | Yun Eun-Young,Lee Woo-Jae,Min Wang Qi,Kwon Se-Hun. Electrical and Corrosion Properties of Titanium Aluminum Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition [J]. J. Mater. Sci. Technol., 2017, 33(3): 295-299. |
[12] | Lim Seh-Yoon, Chae Sudong, Jung Su-Ho, Hyeon Yuhwan, Jang Wonseok, Yoon Won-Sub, Choi Jae-Young, Whang Dongmok. Loose-fit graphitic encapsulation of silicon nanowire for one-dimensional Si anode design [J]. J. Mater. Sci. Technol., 2017, 33(10): 1120-1127. |
[13] | Mengyin Liu, Xinjian Xie, Lei Chen, Xuewei Wang, Yahui Cheng, Feng Lu, Wei-Hua Wang, Jing Yang, Xiwen Du, Junda Zhu, Haitao Liu, Hong Dong, Weichao Wang, Hui Liu. A Rational Design of Heterojunction Photocatalyst CdS Interfacing with One Cycle of ALD Oxide [J]. J. Mater. Sci. Technol., 2016, 32(6): 489-495. |
[14] | Yanghui Liu, Liqiang Zhu, Liqiang Guo, Hongliang Zhang, Hui Xiao. Surface Passivation Performance of Atomic-Layer-Deposited Al2O3 on p-type Silicon Substrates [J]. J. Mater. Sci. Technol., 2014, 30(8): 835-838. |
[15] | Saad Aziz1, Jianqing Zhao1, Carrington Cain, Ying Wang. Nanoarchitectured LiMn2O4/Graphene/ZnO Composites as Electrodes for Lithium Ion Batteries [J]. J. Mater. Sci. Technol., 2014, 30(5): 427-433. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||