J. Mater. Sci. Technol. ›› 2020, Vol. 52: 89-99.DOI: 10.1016/j.jmst.2020.04.021
• Research Article • Previous Articles Next Articles
Changjian Yana, Yunchang Xina,b(), Ce Wangc, Huan Liuc, Qing Liua,b
Received:
2019-12-18
Revised:
2020-01-27
Accepted:
2020-02-06
Published:
2020-09-15
Online:
2020-09-18
Contact:
Yunchang Xin
Changjian Yan, Yunchang Xin, Ce Wang, Huan Liu, Qing Liu. Microstructure and texture evolution of the β-Mg17A12 phase in a Mg alloy with an ultra-high Al content[J]. J. Mater. Sci. Technol., 2020, 52: 89-99.
Fig. 3. SEM micrographs of the heat-treated and the as-extruded samples: (a), (d) heat-treated; (b), (e) longitudinal-section views and (c), (f) cross-section views of the as-extruded sample.
Fig. 8. (a) STEM picture taken in the extrusion sample processed by RD-ECAP at 623 K for 16 passes, (b) and (c) Corresponding EDS maps highlighting the Mg and Al elements.
Fig. 9. SEM images, phase distribution, inverse pole figure maps, pole figures of α-Mg matrix and β-Mg17Al12 phases after 8 passes of RD-ECAP at: (a) 473 K; (b) 523 K; (c) 573 K; (d) 623 K. In phase distribution images, the yellow regions correspond to the α-Mg matrix and red regions correspond to the β-Mg17Al12 phases.
Fig. 10. SEM images, phase distribution, inverse pole figure maps, pole figures of α-Mg matrix and β-Mg17Al12 phases after 16 passes of RD-ECAP at: (a) 523 K; (b) 573 K; (c) 623 K. In phase distribution images, the yellow regions correspond to the α-Mg matrix and red regions correspond to the β-Mg17Al12 phases.
Fig. 11. (a) Examples for crystallographic planar relationships between the α-Mg matrix and β-Mg17Al12 phases determined by EBSD analysis technics [27]; (b) Frequency of the crystallographic planar relationships for {0001}, {11$\bar{2}$0}, {10$\bar{1}$0}, {11$\bar{2}$3} and {1$\bar{2}$11} atomic planes of α-Mg matrix parallel to: (b) {100}, (c) {110} and (d) {111} atomic planes of β-Mg17Al12 phases in samples 573-8, 623-8 and 623-16, respectively. Phase distribution images in (a), the blue regions correspond to the α-Mg matrix and red regions correspond to the β-Mg17Al12 phases.
Fig. 12. Frequency of other crystallographic planar relationship between the α-Mg matrix and β-Mg17Al12 phases in samples 573-8, 623-8 and 623-16, respectively.
Fig. 13. Inverse pole figure maps of the α-Mg matrix after RD-ECAP: for 8 passes at (a) 473 K; (b) 523 K; (c) 573 K; (d) 623 K; for 16 passes at (e) 523 K; (f) 573 K; (g) 623 K.
Fig. 14. Pole figures of the α-Mg matrix after RD-ECAP: for 8 passes at (a) 473 K; (b) 523 K; (c) 573 K; (d) 623 K; for 16 passes at (e) 523 K; (f) 573 K; (g) 623 K.
Sample | Grain Size (μm) |
---|---|
473-8 | 2.01 |
523-8 | 2.54 |
523-16 | 3.34 |
573-8 | 4.15 |
573-16 | 5.98 |
623-8 | 5.66 |
623-16 | 6.05 |
Table 1 The grain size of the α-Mg matrix of RD-ECAPed samples.
Sample | Grain Size (μm) |
---|---|
473-8 | 2.01 |
523-8 | 2.54 |
523-16 | 3.34 |
573-8 | 4.15 |
573-16 | 5.98 |
623-8 | 5.66 |
623-16 | 6.05 |
Fig. 15. Frequency distribution of recrystallized grain, sub-structured grain and deformed grain of the β-Mg17Al12 phase in the extrusion sample processed by RD-ECAP.
Fig. 16. Frequency distribution of recrystallized grain, sub-structured grain and deformed grain of the α-Mg matrix in the extrusion sample processed by RD-ECAP.
[1] | J. Hirsch, T. Al-Samman, Acta Mater., 61(2013), pp. 818-843. |
[2] |
X. Wang, D. Xu, R. Wu, X. Chen, Q. Peng, L. Jin, Y. Xin, Z. Zhang, Y. Liu, X. Chen, J. Mater. Sci. Technol. (2018), Article S1005030217302001.
DOI URL PMID |
[3] | I.J. Polmear, Met. Sci. J., 10(1994), pp. 1-16 |
[4] |
C. Liu, Y. Zhu, Q. Luo, B. Liu, Q. Gu, Q. Li, J. Mater. Sci. Technol., 34(2018), pp. 2235-2239.
DOI URL |
[5] | S. Kleiner, O. Beffort, A. Wahlen, P.J. Uggowitzer, J. Light Met., 2(2002), pp. 277-280. |
[6] | F. Pan, M. Yang, X. Chen, J. Mater. Sci. Technol., 32(2016), pp. 1211-1221. |
[7] | B. Kondori, R. Mahmudi, Metall. Mater. Trans. A, 40(2009), pp. 2007-2015. |
[8] | F. Kabirian, R. Mahmudi, Metall. Mater. Trans. A, 40(2008), pp. 116-127. |
[9] | L. Zhang, Z.Y. Cao, Y.B. Liu, G.H. Su, L.R. Cheng, Mater. Sci. Eng. A, 508(2009), pp. 129-133. |
[10] | W. Cheng, W. Wang, H. Wang, Y. Liu, S.H. Park, Mater. Sci. Eng. A, 633(2015), pp. 63-68. |
[11] | H. Wang, B. Zhou, Y. Zhao, K. Zhou, W. Cheng, W. Liang, Mater. Sci. Eng. A, 589(2014), pp. 119-124. |
[12] | P. Yang, L.-n. Wang, Q.-g. Xie, J.-z. Li, H. Ding, L.-l. Lu,Int. J. Miner. Metal. Mater., 18(2011), pp. 338-343. |
[13] | S.H. Park, S.-H. Kim, Y.M. Kim, B.S. You, J. Alloys Compd., 646(2015), pp. 932-936. |
[14] | Y. Jiang, G. Tang, C. Shek, Y. Zhu, Appl. Phys. A, 97(2009), pp. 607-615. |
[15] | X.L. Ma, S. Eswarappa Prameela, P. Yi, M. Fernandez, N.M. Krywopusk, L.J. Kecskes, T. Sano, M.L. Falk, T.P. Weihs, Acta Mater., 172(2019), pp. 185-199. |
[16] | W.J. Kim, H.G. Jeong, H.T. Jeong, Scripta Mater., 61(2009), pp. 1040-1043. |
[17] | W.J. Kim, I.B. Park, S.H. Han, Scripta Mater., 66(2012), pp. 590-593. |
[18] | X. Liu, H. Zhan, S. Gu, Z. Qu, R. Wu, M. Zhang, Mater. Sci. Eng. A, 528(2011), pp. 6157-6162. |
[19] | R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci., 45(2000), pp. 103-189. |
[20] | S. Khani, M.R. Aboutalebi, M.T. Salehi, H.R. Samim, H. Palkowski, Mater. Sci. Eng. A, 678(2016), pp. 44-56. |
[21] | Y. Nishida, H. Arima, J.C. Kim, T. Ando, Scripta Mater., 45(2001), pp. 261-266. |
[22] | A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu, T. Imura, Acta Mater, 53(2005), pp. 211-220. |
[23] | Z. Wang, H. Wang, W. Wang, G. Ren, K. Nie, Y. Liu, L. Wei, Int. J. Mater. Res., 146 (2016), Article 111446. |
[24] | G.M. Abady, N.H. Hilal, M. El-Rabiee, W.A. Badawy, Electrochim. Acta, 55(2010), pp. 6651-6658. |
[25] | C. Xu, M. Furukawa, Z. Horita, T.G. Langdon, Acta Mater., 51(2003), pp. 6139-6149. |
[26] | J.H. Bae, A.K. Prasada Rao, K.H. Kim, N.J. Kim, Scripta Mater., 64(2011), pp. 836-839. |
[27] | S.I. Wright, M.M. Nowell, Chinese J. Stereol. Image Anal., 10 (2005). |
[28] | C. S,Acta Mater., 48(2000), pp. 1775-1787. |
[29] | J. Lin, Q. Wang, L. Peng, H.J. Roven, J. Alloys Compd., 476(2009), pp. 441-445. |
[30] | P. Zhang, Y. Xin, L. Zhang, S. Pan, Q. Liu, J. Mater, Sci. Technol. (2019). |
[31] | S.R. Agnew, J.A. Horton, T.M. Lillo, D.W. Brown, Scripta Mater., 50(2004), pp. 377-381. |
[32] | S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, P.K. Liaw, Mater. Sci. Eng. A, 408(2005), pp. 72-78. |
[33] | S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, P.K. Liaw, Acta Mater., 53(2005), pp. 3135-3146. |
[34] | J. Lin, W. Ren, Q. Wang, L. Ma, Y. Chen, Adv. Mater. Sci. Eng, 2014 (2014), pp. 1-9. |
[35] |
Y. Miyahara, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A, 420(2006), pp. 240-244.
DOI URL |
[36] | K. Xia, J.T. Wang, X. Wu, G. Chen, M. Gurvan, Mater. Sci. Eng. A, 410-411(2005), pp. 324-327. |
[37] | F.J. Humphreys, Acta Metall., 25(1977), pp. 1323-1344. |
[38] | S. Wang, R. Ma, L. Yang, Y. Wang, Y. Wang, J. Mater. Sci., 46(2010), pp. 3060-3065. |
[39] | S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, Y. Kojima, Scripta Mater., 61(2009), pp. 249-252. |
[40] |
E.A. Ball, P.B. Prangnell, Scr. Metall. Mater., 31(1994), pp. 111-116.
DOI URL |
[41] |
J.D. Robson, X. Zhou, G.E. Thompson, Mater. Technol., 24(2013), pp. 133-136.
DOI URL |
[42] | H. Yu, Y. Xin, M. Wang, Q. Liu, J. Mater, Sci. Technol., 34(2018), pp. 248-256. |
[43] | S. Dobatkin, S. Galkin, Y. Estrin, V. Serebryany, M. Diez, N. Martynenko, E. Lukyanova, V. Perezhogin, J. Alloys Compd., 774(2019), pp. 969-979. |
[44] | B. Guan, Y. Xin, X. Huang, P. Wu, Q. Liu, Acta Mater., 173(2019), pp. 142-152. |
[45] | W.J. Kim, C.W. An, Y.S. Kim, S.I. Hong, Scripta Mater., 47(2002), pp. 39-44. |
[46] | W.M. Gan, K. Wu, M.Y. Zheng, X.J. Wang, H. Chang, H.G. Brokmeier, Mater. Sci. Eng. A, 516(2009), pp. 283-289. |
[47] | K. Yang, J. Zhang, X. Zong, W. Wang, C. Xu, W. Cheng, K. Nie, Mater. Sci. Eng. A, 669(2016), pp. 340-343. |
[1] | Durga Bhakta Pokharel, Liping Wu, Junhua Dong, Xin Wei, Ini-Ibehe Nabuk Etim, Dhruba Babu Subedi, Aniefiok Joseph Umoh, Wei Ke. Effect of D-fructose on the in-vitro corrosion behavior of AZ31 magnesium alloy in simulated body fluid [J]. J. Mater. Sci. Technol., 2021, 66(0): 202-212. |
[2] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[3] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[4] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[5] | Yi Zhang, Lili Tan, Qingchuan Wang, Ming Gao, Iniobong P. Etim, Ke Yang. Effects of microstructure on the torsional properties of biodegradable WE43 Mg alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 102-110. |
[6] | Zhao Jie, Lv Liangxing, Wang Kehuan, Liu Gang. Effects of strain state and slip mode on the texture evolution of a near-α TA15 titanium alloy during hot deformation based on crystal plasticity method [J]. J. Mater. Sci. Technol., 2020, 38(0): 125-134. |
[7] | Shun Zhang, Yong Sun, Ruizhi Wu, Xiang Wang, Xiao-Bo Chen, Carlos Fernandez, Qiuming Peng. Coherent interface strengthening of ultrahigh pressure heat-treated Mg-Li-Y alloys [J]. J. Mater. Sci. Technol., 2020, 51(0): 79-83. |
[8] | Liting Guo, Changdong Gu, Jie Feng, Yongbin Guo, Yuan Jin, Jiangping Tu. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 37(0): 9-18. |
[9] | Yu Zhang, Wei Rong, Yujuan Wu, Liming Peng. Achieving ultra-high strength in Mg-Gd-Ag-Zr wrought alloy via bimodal-grained structure and enhanced precipitation [J]. J. Mater. Sci. Technol., 2020, 54(0): 160-170. |
[10] | Lifeng Zhang, Shangyi Ma, Weizhen Wang, Zhiqing Yang, Hengqiang Ye. Atomic structure and enhanced thermostability of a new structure MgYZn4 formed by ordered substitution of Y for Mg in MgZn2 in a Mg-Zn-Y alloy [J]. J. Mater. Sci. Technol., 2019, 35(9): 2058-2063. |
[11] | Shude Ji, Shiyu Niu, Jianguang Liu. Dissimilar Al/Mg alloys friction stir lap welding with Zn foil assisted by ultrasonic [J]. J. Mater. Sci. Technol., 2019, 35(8): 1712-1718. |
[12] | Lingyang Yuan, Liming Peng, Jingyu Han, Baoliang Liu, Yujuan Wu, Juan Chen. Effect of Cu addition on microstructures and tensile properties of high-pressure die-casting Al-5.5Mg-0.7Mn alloy [J]. J. Mater. Sci. Technol., 2019, 35(6): 1017-1026. |
[13] | Huijun Guo, Xun Zeng, Jianfeng Fan, Hua Zhang, Qiang Zhang, Weiguo Li, Hongbiao Dong, Bingshe Xu. Effect of electropulsing treatment on static recrystallization behavior of cold-rolled magnesium alloy ZK60 with different reductions [J]. J. Mater. Sci. Technol., 2019, 35(6): 1113-1120. |
[14] | Wen Zhang, Lili Tan, Dingrui Ni, Junxiu Chen, Ying-Chao Zhao, Long Liu, Cijun Shuai, Ke Yang, Andrej Atrens, Ming-Chun Zhao. Effect of grain refinement and crystallographic texture produced by friction stir processing on the biodegradation behavior of a Mg-Nd-Zn alloy [J]. J. Mater. Sci. Technol., 2019, 35(5): 777-783. |
[15] | M. Wang, B.B. He, M.X. Huang. Strong and ductile Mg alloys developed by dislocation engineering [J]. J. Mater. Sci. Technol., 2019, 35(3): 394-395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||