J. Mater. Sci. Technol. ›› 2020, Vol. 50: 103-114.DOI: 10.1016/j.jmst.2020.02.035
• Research Article • Previous Articles Next Articles
S.C. Hana,b, L.H. Wua,*(), C.Y. Jianga, N. Lia, C.L. Jiaa, P. Xuea, H. Zhanga, H.B. Zhaoa, D.R. Nia, B.L. Xiaoa,*(
), Z.Y. Maa
Received:
2019-11-28
Revised:
2020-01-19
Accepted:
2020-02-17
Published:
2020-08-01
Online:
2020-08-10
Contact:
L.H. Wu,B.L. Xiao
S.C. Han, L.H. Wu, C.Y. Jiang, N. Li, C.L. Jia, P. Xue, H. Zhang, H.B. Zhao, D.R. Ni, B.L. Xiao, Z.Y. Ma. Achieving a strong polypropylene/aluminum alloy friction spot joint via a surface laser processing pretreatment[J]. J. Mater. Sci. Technol., 2020, 50: 103-114.
Fig. 2. (a) Schematic of laser processing pretreatment on Al alloy surface, and metallographic photos of Al alloy surface, (b) before pretreatment, (c) after laser processing pretreatment, (d) cross section after pretreatment, (e) topographical view of Al alloy surface measured by surface profilometer.
Fig. 4. (a) Typical macro surface image of friction spot joint of PP to Al alloy after laser processing pretreatment, (b) variation of tensile shear force and strength of joints with laser scanning number.
Fig. 5. Maximum normal tensile shear strength and force of non-polar plastic-metal hybrid joints from different researches. FLW and FSLW represent friction (stir) lap welding and friction (stir) spot lap welding, respectively. The red and black columns represent normal tensile shear strength and force, respectively in this figure.
Fig. 6. (a) Temperature measurement position, (b) temperature measurement results, (c-f) cross sections of Al?PP joints with laser scanning number of 5, 10, 20 and 40, (g) typical microstructure of Al?PP joint for laser scanning 10 times.
Fig. 7. SEM images of Al?PP joint for laser scanning 5 times: (a, b) interface at joint center ("position 1" in Fig. 6(a)), (c, d) high magnification of red frame in (b), (e, f) high magnified images of groove bottom at joint position of 3.75 mm away from joint center ("position 2" in Fig. 6(a)) and at joint position of 7.5 mm away from joint center ("position 3" in Fig. 6(a)).
Fig. 8. SEM images of Al?PP interface of joints: (a) laser processing for 10 times, (b) laser processing for 40 times, (c, d) high magnification of Al?PP interface for 40 times.
Fig. 9. (a) Joint surface morphology after stretching at laser scanning 5 times, (b) PP remained on metal side, (c, d) residual PP on metal side by SEM-EDS analysis.
Fig. 10. (a) Typical fractured surface morphology of Al?PP joint for laser scanning 40 times after fracturing, (b) cross section of Al?PP joint for 10 times after fracturing, (c) high magnified SEM image of joint interface between Al alloy and PP for 10 times after fracturing, (d) most joint interface between Al alloy and PP for 40 times after fracturing, (e) Al anchors was pulled to fracture in some position of Al?PP joint for 40 times, (f) tight bonding at joint interface between Al alloy and PP for 40 times after fracturing.
Method (materials) | Max TSF (kN) | Max normal TSS (% of plastic BM) | Normal joining area (mm2) | Remark | Ref. |
---|---|---|---|---|---|
FLW (Al alloy-PP) | ~0.37 | ~0.71* (2.8%) | 20 × 25.8 | Tool Φ20 mm; Interface fracture | [ |
Reported max TSS: ~5.1MPa | |||||
FSLW (Al alloy-PP based composite) | 0.35 | ~1.1* | π × 102 | 5052 Al alloy: Pre-threaded hole Φ4 mm; | [ |
(~3.2%) | Tool Φ20 mm without pin; Interface fracture | ||||
Reported max TSS: ~28 MPa | |||||
FSLW (Al alloy-PP) | 0.54 | ~3.5* (~10%) | π × 72 | 2219Al alloy: Pre-threaded hole Φ4 mm; | [ |
Tool Φ14 mm without pin; Interface fracture | |||||
FLW(SPCC alloy-PE) | 0.95 | ~4.2 (--) | 15 × 15 | PE: Corona-discharge; | [ |
Tool Φ15 mm without pin; Interface fracture | |||||
FSLW (Al alloy-PP) | 1.23 | ~3.9* (--) | π × 102 | 5052 Al alloy: plasma electrolytic oxidation; Pre-drilled hole Φ5 mm; | [ |
Tool Φ20 mm; Interface fracture | |||||
FLW (Mg alloy-PE) | ~1.4 | 4.67 (--) | 15 × 20 | Low density PE: Corona-discharge; | [ |
Mg alloy: plasma electrolytic oxidation; | |||||
Tool Φ15 mm without pin; Interface fracture | |||||
FSLW (Ti alloy-PE) | ~1.35 | ~22.5 (~64%) | π × 52 | Ti-6Al-4 V alloy: 3D printed, porous; | [ |
Tool Φ10 mm without pin; PE fracture | |||||
FSLW (Al alloy-PP) | 2.4 | 29 (100%) | π × 7.52 | 5052 Al alloy: laser processing, porous; | This study |
Tool Φ15 mm without pin; PP BM fracture |
Table A1 Maximum normal TSS and TSF of non-polar polymer-metal hybrid lap joints.
Method (materials) | Max TSF (kN) | Max normal TSS (% of plastic BM) | Normal joining area (mm2) | Remark | Ref. |
---|---|---|---|---|---|
FLW (Al alloy-PP) | ~0.37 | ~0.71* (2.8%) | 20 × 25.8 | Tool Φ20 mm; Interface fracture | [ |
Reported max TSS: ~5.1MPa | |||||
FSLW (Al alloy-PP based composite) | 0.35 | ~1.1* | π × 102 | 5052 Al alloy: Pre-threaded hole Φ4 mm; | [ |
(~3.2%) | Tool Φ20 mm without pin; Interface fracture | ||||
Reported max TSS: ~28 MPa | |||||
FSLW (Al alloy-PP) | 0.54 | ~3.5* (~10%) | π × 72 | 2219Al alloy: Pre-threaded hole Φ4 mm; | [ |
Tool Φ14 mm without pin; Interface fracture | |||||
FLW(SPCC alloy-PE) | 0.95 | ~4.2 (--) | 15 × 15 | PE: Corona-discharge; | [ |
Tool Φ15 mm without pin; Interface fracture | |||||
FSLW (Al alloy-PP) | 1.23 | ~3.9* (--) | π × 102 | 5052 Al alloy: plasma electrolytic oxidation; Pre-drilled hole Φ5 mm; | [ |
Tool Φ20 mm; Interface fracture | |||||
FLW (Mg alloy-PE) | ~1.4 | 4.67 (--) | 15 × 20 | Low density PE: Corona-discharge; | [ |
Mg alloy: plasma electrolytic oxidation; | |||||
Tool Φ15 mm without pin; Interface fracture | |||||
FSLW (Ti alloy-PE) | ~1.35 | ~22.5 (~64%) | π × 52 | Ti-6Al-4 V alloy: 3D printed, porous; | [ |
Tool Φ10 mm without pin; PE fracture | |||||
FSLW (Al alloy-PP) | 2.4 | 29 (100%) | π × 7.52 | 5052 Al alloy: laser processing, porous; | This study |
Tool Φ15 mm without pin; PP BM fracture |
[1] | B. Wielage, D. Richter, H. Mucha, T. Lampke, J. Mater. Sci. Technol. 24 2008 953-959. |
[2] | A. Pramanik, A.K. Basak, Y. Dong, P.K. Sarker, M.S. Uddin, G. Littlefair, A.R. Dixit, S. Chattopadhyaya, Compos. Part A 101 (2017) 1-29. |
[3] | J.M. Arenas, C. Alía, J.J. Narbón, R. Oca˜na, C. González, Compos. Part B 44 (2017) 417-423. |
[4] | J.P. Kabche, V. Caccese, K.A. Berube, R. Bragg, Compos. Part B 38 (2007) 66-78. |
[5] | F. Balle, G. Wagner, D. Eifler, Adv. Eng. Mater. 11 2009 35-39. |
[6] | F. Balle, G. Wagner, D. Eifler, Materialwiss. Werkstofftech. 38 2007 934-938. |
[7] | X.H. Tan, J. Zhang, J.G. Shan, S.L. Yang, J.L. Ren, Compos. Part B 70 (2015) 35-43. |
[8] | S. Katayama, Y. Kawahito, Scr. Mater. 59 2008 1247-1250. |
[9] | K. Nagatsuka, S. Yoshida, A. Tsuchiya, K. Nakata, Compos. Part B 73 (2015) 82-88. |
[10] | L.H. Wu, K. Nagatsuka, K. Nakata, J. Mater, Sci. Technol. 34 2018 192-197. |
[11] | F. Balle, D. Eifler, Materialwiss. Werkstofftech. 43 2012 286-292. |
[12] | K.W. Jung, Y. Kawahito, M. Takahashi, S. Katayama, J. Laser Appl. 25 2013 032003. |
[13] | L.H. Wu, X.B. Hu, X.X. Zhang, Y.Z. Li, Z.Y. Ma, X.L. Ma, B.L. Xiao, Acta Mater. 166 2019 371-385. |
[14] | R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Prog. Mater. Sci. 53 2008 980-1023. |
[15] | L.H. Wu, D. Wang, B.L. Xiao, Z.Y. Ma, Scr. Mater. 78-79 2014 17-20. |
[16] | L.H. Wu, H. Zhang, X.H. Zeng, P. Xue, B.L. Xiao, Z.Y. Ma, Sci. China Mater. 61 2018 417-423. |
[17] | F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, T.W. Nelson, J. Mater. Sci. Technol. 34 2018 39-57. |
[18] | Y.X. Huang, X.C. Meng, Y.M. Xie, J.C. Li, L. Wan, Compos. Part A 112 (2018) 328-336. |
[19] | F.C. Liu, J. Liao, Y. Gao, K. Nakata, Sci. Technol. Weld. Joining 20 (2015) 291-296. |
[20] | F.C. Liu, J. Liao, K. Nakata, Mater. Des. 54 2014 236-244. |
[21] | S. Eslami, P.J. Tavares, P.M.G.P. Moreira, Int. J. Adv. Manufact. Technol. 89 2016 1677-1690. |
[22] | Y. Huang, X. Meng, Y. Wang, Y. Xie, L. Zhou, J. Mater. Proc. Technol. 257 2018 148-154. |
[23] | S.M. Goushegir, J.F. dos Santos, S.T. Amancio-Filho, Mater. Des. 54 2014 196-206. |
[24] | L.H. Wu, K. Nagatsuka, K. Nakata, J. Mater. Sci. Technol. 34 (9) (2018) 1628-1637. |
[25] | F.C. Liu, P. Dong, W. Lu, K. Sun, Appl. Surf. Sci. 466 2019 202-209. |
[26] | Z. Zhang, J.-G. Shan, X.-H. Tan, J. Zhang, Int. J. Adhes. Adhes. 70 2016 142-151. |
[27] | H. Karami Pabandi, M. Movahedi, A.H. Kokabi, Compos. Struct. 174 2017 59-69. |
[28] |
H. Shahmiri, M. Movahedi, A.H. Kokabi, Sci. Technol. Weld. Joining 22 (2) (2016) 120-126.
DOI URL |
[29] |
K. Nagatsuka, D. Kitagawa, H. Yamaoka, K. Nakata, ISIJ Int. 56 2016 1226-1231.
DOI URL |
[30] |
M. Paidara, O.O. Ojob, A. Moghanianc, H.K. Pabandid, M. Elsae, J. Mater. Process. Technol. 273 2019 116272.
DOI URL |
[31] |
S. Aliasghari, M. Ghorbani, P. Skeldon, H. Karami, M. Movahedi, Surf. Coat. Technol. 313 2017 274-281.
DOI URL |
[32] |
K. Chen, B. Chen, S. Zhang, M. Wang, L. Zhang, A. Shan, Mater. Des. 132 2017 178-187.
DOI URL |
[33] |
S. Qian, T. Igarashi, K. Nitta, Polym. Bull. 67 2011 1661-1670.
DOI URL |
[34] | Y. Feng, L. Zhou, N. Dong, X. Hong, China Plast. 17 2003 87-90 (In Chinese). |
[1] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[2] | Tianqi Hou, Zirui Jia, Ailing Feng, Zehua Zhou, Xuehua Liu, Hualiang Lv, Guanglei Wu. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity [J]. J. Mater. Sci. Technol., 2021, 68(0): 61-69. |
[3] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[4] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[5] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[6] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[7] | Y.D. Liu, J. Sun, W. Li, W.S. Gu, Z.L. Pei, J. Gong, C. Sun. Microstructural evolution and mechanical properties of NiCrAlYSi+NiAl/cBN abrasive coating coated superalloy during cyclic oxidation [J]. J. Mater. Sci. Technol., 2021, 71(0): 44-54. |
[8] | Kaustubh Bawane, Kathy Lu, Xian-Ming Bai, Jing Hu, Meimei Li, Peter M. Baldo, Edward Ryan. Microstructural evolution of a silicon carbide-carbon coated nanostructured ferritic alloy composite during in-situ Kr ion irradiation at 300°C 450°C [J]. J. Mater. Sci. Technol., 2021, 71(0): 75-83. |
[9] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
[10] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[11] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[12] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[13] | Wei Feng, Nian Liu, Lingling Gao, Qian Zhou, Luofeng Yu, Xiaoting Ye, Jingjing Huo, Xiao Huang, Peng Li, Wei Huang. Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines [J]. J. Mater. Sci. Technol., 2021, 69(0): 188-199. |
[14] | M.C. Ri, D.W. Ding, Y.H. Sun, W.H. Wang. Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment [J]. J. Mater. Sci. Technol., 2021, 69(0): 1-6. |
[15] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||