J. Mater. Sci. Technol. ›› 2020, Vol. 48: 105-113.DOI: 10.1016/j.jmst.2020.03.013
• Research Article • Previous Articles Next Articles
Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul*()
Received:
2019-11-12
Accepted:
2020-01-29
Published:
2020-07-01
Online:
2020-07-13
Contact:
Paveena Laokul
Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48: 105-113.
Fig. 1. SEM images and the corresponding size distribution histograms of carbon spheres prepared using dextrose solutions at various pH values (a) pH 3, (b) pH 7 and (b) pH 10.
Fig. 4. FESEM micrographs (left) and corresponding higher magnification images (right) of the prepared TiO2 hollow spheres (a) THs-pH3, (b) THs-pH7 and (c) THs-pH10.
Fig. 7. N2 adsorption-desorption isotherms and the corresponding pore size distribution curves (inset) of the THs samples compared to TiO2 nanoparticles.
Sample | Diameter (nm) | Shell thickness (nm) | Surface area (m2/g) | Pore volume (cm3/g) | Absorption edge (nm) | Eg (eV) | Rate constant (min-1) | Degradation (%) |
---|---|---|---|---|---|---|---|---|
TNPs | n/a | n/a | 4.27 | 0.03 | 402 | 2.98 | 1.38 × 10-3 | 21.81 |
THs-pH3 | 667.98 ± 22.27 | 46.98 ± 8.30 | 138.07 | 0.89 | 409 | 2.88 | 5.21 × 10-3 | 62.22 |
THs-pH7 | 327.03 ± 22.12 | 28.36 ± 6.63 | 101.98 | 0.58 | 394 | 3.12 | 10.43 × 10-3 | 89.76 |
THs-pH10 | 170.91 ± 37.86 | 32.62 ± 6.00 | 54.53 | 0.47 | 397 | 3.05 | 8.34 × 10-3 | 76.10 |
Table 1 Summary of diameter and shell thickness, specific surface area, pore-volume, optical absorption edge, band gap energy (Eg), rate constant and degradation efficiency of as-prepared samples.
Sample | Diameter (nm) | Shell thickness (nm) | Surface area (m2/g) | Pore volume (cm3/g) | Absorption edge (nm) | Eg (eV) | Rate constant (min-1) | Degradation (%) |
---|---|---|---|---|---|---|---|---|
TNPs | n/a | n/a | 4.27 | 0.03 | 402 | 2.98 | 1.38 × 10-3 | 21.81 |
THs-pH3 | 667.98 ± 22.27 | 46.98 ± 8.30 | 138.07 | 0.89 | 409 | 2.88 | 5.21 × 10-3 | 62.22 |
THs-pH7 | 327.03 ± 22.12 | 28.36 ± 6.63 | 101.98 | 0.58 | 394 | 3.12 | 10.43 × 10-3 | 89.76 |
THs-pH10 | 170.91 ± 37.86 | 32.62 ± 6.00 | 54.53 | 0.47 | 397 | 3.05 | 8.34 × 10-3 | 76.10 |
Fig. 8. UV-vis absorption spectra of TNPs and THs samples. The inset contains plots of (αhν)1/2 versus photon energy (hν) of the THs samples compared to TiO2 nanoparticles.
Fig. 11. (a) Photocatalytic degradation of MO, (b) the degradation rate of all samples, (c) absorbance of MO dye by the THs and TiO2 nanoparticles after 140 min of photocatalytic degradation and (d) variations of ln(C0/C) as a function of irradiation time.
[1] |
D. Sun, H. Bai, Z. Liu, Appl. Catal. B 104 ( 2011) 234-238.
DOI URL |
[2] | C.K. Ngaw, Q. Xu, T.T.Y. Tan, P. Hu, S. Cao, J.S.C. Loo, Chem. Eng. J. 257 (2014) 112-121. |
[3] | J.V. Hernandez, S. Coste, A.G. Murillo, F.C. Romo, A. Kassiba, J. Alloys. Compd. 710 (2017) 355-363. |
[4] | B. Reti, G.I. Kiss, T. Gyulavari, K. Baan, K. Magyari, K. Hernadi, Catal Today 284 ( 2017) 160-168. |
[5] | M.A. Henderson, Surf. Sci. Rep. 66 (2011) 185-297. |
[6] | P. Salvador, J. Phys. Chem. C 111 ( 2007) 17038-17043. |
[7] | H. Yang, K. Zhang, R. Shi, X. Li, X. Dong, Y. Yu, J. Alloys. Compd. 413 (2006) 302-306. |
[8] | Q.E. Zhao, W. Wen, Y. Xia, J.M. Wu, Thin Solid Films 648 ( 2018) 103-107. |
[9] | Y. Ye, Y. Feng, H. Bruning, D. Yntema, H.H.M. Rijnaarts, Appl. Catal. B-Environ. 220 (2018) 171-181. |
[10] |
W.S. Wang, D.H. Wang, W.G. Qu, L.Q. Lu, A.W. Xu, J. Phys. Chem. C 116 ( 2012) 19893-19901.
DOI URL |
[11] | Y. Li, et al., Appl. Catal. B-Environ. 246 (2019) 12-20. |
[12] | Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Appl. Mater. Today 13 ( 2018) 217-227. |
[13] |
C.J. Lin, W.T. Yang, C.Y. Chou, S.Y.H. Liou, Chemosphere 152 ( 2016) 490-495.
URL PMID |
[14] | H.L. Shen, H.H. Hu, D.Y. Liang, H.L. Meng, P.G. Li, W.H. Tang, C. Cui, J. Alloy. Comp. 542 (2012) 32-36. |
[15] |
L. Chang, J. Wang, M. Zhu, W. Zhang, J. Liu, Mater. Sci. Eng. B 172 ( 2010) 142-145.
DOI URL |
[16] | Z.Z. Yang, Z.W. Niu, Y.F. Lu, Z.B. Hu, C.C. Han, Angew. Chem. Int. Ed. 42 (2003) 1943-1945. |
[17] | C. Wang, Y. Ao, P. Wang, J. Hou, J. Qian, Appl. Surf. Sci. 57 (2010) 227-231. |
[18] | N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, L. Siller, Sci. Iran. F 20 ( 2013) 1018-1022. |
[19] | S. Liu, X. Wang, H. Zhao, W. Cai, Colloids Surf. A Physicochem. Eng. Asp. 484 (2015) 386-393. |
[20] | S. Kang, D. Yin, X. Li, L. Li, J. Mu, Mater. Res. Bull. 47 (2012) 3065-3069. |
[21] |
J. Wang, Y. Bai, M. Wu, J. Yin, W.F. Zhang, J. Power. Sources 191 ( 2009) 614-618.
DOI URL |
[22] | P. Pradubkorn, S. Maensiri, E. Swatsitang, P. Laokul, Curr. Appl. Phys. 20 (2020) 178-185. |
[23] | H. Yin, X. Wang, L. Wang, Q. Nie, Y. Zhang, Q. Yuan, W. Wu, J. Alloy. Comp. 657 (2016) 44-52. |
[24] | J. Li, H. Cui, X. Song, N. Wei, J. Tian, Appl. Surf. Sci. 396 (2017) 1539-1549. |
[25] | M. Sevilla, A.B. Fuertes, Chem. A Eur. J. 15 (16) ( 2009) 4195-4203. |
[26] | X. Sun, Y. Li, Angew. Chem. Int. Ed. 43 (5) ( 2004) 597-601. |
[27] |
M. Li, Q. Wu, M. Wen, J. Shi, Nanoscale Res. Lett. 4 (11) ( 2009) 1365-1370.
DOI URL PMID |
[28] |
S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, J. Colloid Interface Sci. 450 (2015) 213-223.
DOI URL PMID |
[29] | R. Liu, F. Ren, W.Su.P. He, C. Shen, L. Zhang, C. Wang, Ceram. Int. 450 (2015) 14615-14620. |
[30] | J.W. Shi, J.W. Chen, H.J. Cui, M.L. Fu, H.Y. Luo, B. Ye, Z.L. Ye, Chem. Eng. J. 195-196 (2012) 226-232. |
[31] | M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. Sing, Pure Appl. Chem. 87 (2015) 1051-1069. |
[32] |
C. Moreno-Castilla, H. García-Rosero, F. Carrasco-Marín, Colloids Surf. A Physicochem. Eng. Asp. 520 (2017) 488-496.
DOI URL |
[33] |
C. Wang, J. Wu, P. Wang, Y. Ao, J. Hou, J. Qian, Actuators B 181 ( 2013) 1-8.
DOI URL |
[34] |
Q. Mei, F. Zhang, Ng Wang, Y. Yang, R. Wu, W. Wang, RSC Adv. 9 (2019) 22764.
DOI URL |
[35] |
D.K. Pallotti, L. Passoni, P. Maddalena, F.D. Fonzo, S. Lettieri, J. Phys. Chem. C 121 ( 2017) 9011-9021.
DOI URL |
[36] |
W.J. Ong, S.Y. Voon, L.L. Tan, B.T. Goh, S.T. Yong, S.P. Chai, J. Ind. Eng. Chem. Res. 53 (2014) 17333-17334.
DOI URL |
[37] |
J. Jia, D. Li, J. Wan, X. Yu, J. Ind. Eng. Chem. 33 (2016) 162-169.
DOI URL |
[38] |
L. Zhang, M.S. Tse, O.K. Tan, Y.X. Wang, M. Han, J. Mater. Chem. A 1 ( 2013) 4497-4507.
DOI URL |
[39] |
Y. Su, Nanotechnology 24 ( 2013), 295401.
URL PMID |
[40] |
Z. Liu, D.D. Sun, P. Guo, J.O. Leckie, Chem. Eur. J. 13 (2007) 1851-1855.
URL PMID |
[41] |
R. Wang, X. Cai, F. Shen, Ceram. Int. 39 (2013) 9465-9470.
DOI URL |
[42] |
X. Lin, D. Fu, L. Hao, Z. Ding, J. Environ. Sci. 25 (10) ( 2013) 2150-2156.
DOI URL |
[43] |
Z.Y. Liu, H.W. Bai, D.R. Sun, Appl. Catal. B-Environ. 104 (2011) 234-238.
DOI URL |
[44] |
L. Liu, H. Liu, Y. Zhao, Y. Wang, Y. Duan, G. Gao, M. Ge, W. Chen, Environ. Sci. Technol. 42 (2008) 2342-2348.
DOI URL PMID |
[45] |
H.L. Shena, H.H. Hub, D.Y. Lianga, H.L. Menga, P.G. Lia, W.H. Tanga, C. Cui, J. Alloys. Compd. 542 (2012) 32-36.
DOI URL |
[1] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[2] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[3] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
[4] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
[5] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[6] | Xian Yue, Junhui Xiang, Junyong Chen, Huaxin Li, Yunsheng Qiu, Xianbo Yu. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization [J]. J. Mater. Sci. Technol., 2020, 47(0): 223-230. |
[7] | Su Jian, Fang Changqing, Yang Mannan, Cheng Youliang, Wang Zhen, Huang Zhigang, You Caiyin. A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method [J]. J. Mater. Sci. Technol., 2020, 38(0): 183-188. |
[8] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
[9] | Cuiyu Zhang, Xuan Ge, Qiaodan Hu, Fan Yang, Pingsheng Lai, Caijuan Shi, Wenquan Lu, Jianguo Li. Atomic scale structural analysis of liquid immiscibility in binary silicate melt: A case of SiO2‒TiO2 system [J]. J. Mater. Sci. Technol., 2020, 53(0): 53-60. |
[10] | Xidong Zhang, Dong Yue, Ling Zhang, Shiwei Lin. Three-dimensional flexible Au nanoparticles-decorated TiO2 nanotube arrays for photoelectrochemical biosensing [J]. J. Mater. Sci. Technol., 2020, 56(0): 162-169. |
[11] | D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, A.B. Podgorbunsky, A.Yu. Ustinov, V.Yu. Mayorov, V.G. Kuryavyi, S.L. Sinebryukhov. Vanadium-doped TiO2-B/anatase mesoporous nanotubes with improved rate and cycle performance for rechargeable lithium and sodium batteries [J]. J. Mater. Sci. Technol., 2020, 54(0): 181-189. |
[12] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
[13] | Jiajun Luo, Maryam Tamaddon, Changyou Yan, Shuanhong Ma, Xiaolong Wang, Feng Zhou, Chaozong Liu. Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer [J]. J. Mater. Sci. Technol., 2020, 49(0): 47-55. |
[14] | Qinqin Liu, Jinxin Huang, Hua Tang, Xiaohui Yu, Jun Shen. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 196-205. |
[15] | Na Li, Fei Chen, Xiangtao Chen, Zhongxu Chen, Yang Qi, Xiaodong Li, Xudong Sun. A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 152-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||