J. Mater. Sci. Technol. ›› 2020, Vol. 45: 23-34.DOI: 10.1016/j.jmst.2020.01.003
• Research Article • Previous Articles Next Articles
Shiwei Cia,b, Jingjing Lianga,c,d,*(), Jinguo Lia,d, Yizhou Zhoua,*(
), Xiaofeng Suna
Received:
2019-06-21
Revised:
2019-09-14
Accepted:
2019-09-14
Published:
2020-05-15
Online:
2020-05-27
Contact:
Jingjing Liang,Yizhou Zhou
Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. J. Mater. Sci. Technol., 2020, 45: 23-34.
C | Cr | Co | W | Mo | Al | Nb | Ta | Re | Ni |
---|---|---|---|---|---|---|---|---|---|
0.12-0.18 | 4.30-5.60 | 8.00-10.00 | 7.70-9.50 | 0.80-1.40 | 5.60-6.30 | 1.40-1.80 | 3.50-4.50 | 3.50-4.50 | Bal. |
Table 1 Main chemical composition of DD32 alloy (wt%).
C | Cr | Co | W | Mo | Al | Nb | Ta | Re | Ni |
---|---|---|---|---|---|---|---|---|---|
0.12-0.18 | 4.30-5.60 | 8.00-10.00 | 7.70-9.50 | 0.80-1.40 | 5.60-6.30 | 1.40-1.80 | 3.50-4.50 | 3.50-4.50 | Bal. |
Fig. 1. Laser working state (a), schematic diagram of the laser scanning path, (b) repaired DD32 alloy sample (c) and specimen geometry for tensile test (d).
Temperature (°C) | YS (MPa) | UTS (MPa) | Elongation (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | ||||
660 | 890 | 907.6 | 11.7 | 1031 | 1054.8 | 12.7 | 7.5 | 6.4 | 0.9 |
901 | 1054 | 7.5 | |||||||
925 | 1066 | 6 | |||||||
910 | 1058 | 5.5 | |||||||
912 | 1065 | 5.5 | |||||||
760 | 937 | 929.2 | 15.9 | 1116 | 1118.4 | 16.1 | 15 | 12.4 | 2 |
952 | 1129 | 13 | |||||||
918 | 1142 | 9 | |||||||
906 | 1095 | 12 | |||||||
933 | 1110 | 13 | |||||||
900 | 669 | 661.2 | 16.7 | 878 | 851.4 | 15.6 | 16 | 13.9 | 1.4 |
683 | 845 | 15 | |||||||
660 | 854 | 12 | |||||||
662 | 830 | 13 | |||||||
632 | 850 | 13.5 | |||||||
1000 | 513 | 517.6 | 13 | 662 | 657.6 | 16.3 | 15 | 14.5 | 2.1 |
500 | 635 | 16 | |||||||
540 | 685 | 13.5 | |||||||
520 | 655 | 11 | |||||||
515 | 651 | 17 | |||||||
1100 | 416 | 405 | 13.5 | 425 | 425.6 | 13.3 | 15.5 | 13.9 | 2.4 |
395 | 425 | 17 | |||||||
407 | 415 | 10 | |||||||
422 | 426 | 12.5 | |||||||
385 | 450 | 14.5 |
Table 2 Yield strength (YS), ultimate tensile strength (UTS) and strain of each sample at each temperature, and mean and std of YS, UTS and elongation of the samples in each temperature.
Temperature (°C) | YS (MPa) | UTS (MPa) | Elongation (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | ||||
660 | 890 | 907.6 | 11.7 | 1031 | 1054.8 | 12.7 | 7.5 | 6.4 | 0.9 |
901 | 1054 | 7.5 | |||||||
925 | 1066 | 6 | |||||||
910 | 1058 | 5.5 | |||||||
912 | 1065 | 5.5 | |||||||
760 | 937 | 929.2 | 15.9 | 1116 | 1118.4 | 16.1 | 15 | 12.4 | 2 |
952 | 1129 | 13 | |||||||
918 | 1142 | 9 | |||||||
906 | 1095 | 12 | |||||||
933 | 1110 | 13 | |||||||
900 | 669 | 661.2 | 16.7 | 878 | 851.4 | 15.6 | 16 | 13.9 | 1.4 |
683 | 845 | 15 | |||||||
660 | 854 | 12 | |||||||
662 | 830 | 13 | |||||||
632 | 850 | 13.5 | |||||||
1000 | 513 | 517.6 | 13 | 662 | 657.6 | 16.3 | 15 | 14.5 | 2.1 |
500 | 635 | 16 | |||||||
540 | 685 | 13.5 | |||||||
520 | 655 | 11 | |||||||
515 | 651 | 17 | |||||||
1100 | 416 | 405 | 13.5 | 425 | 425.6 | 13.3 | 15.5 | 13.9 | 2.4 |
395 | 425 | 17 | |||||||
407 | 415 | 10 | |||||||
422 | 426 | 12.5 | |||||||
385 | 450 | 14.5 |
Fig. 2. Microstructures of the repaired DD32 single superalloy (a), dendrites at the deposited area (b), at the joint area (c) and at the substrate area (d). (b), (c) and (d) are taken from the area of box ①, ② and ③ in (a). Green thin lines in (a) represent the pool line. The area between green dotted lines in (a) draw HAZ. The green dotted line in (c) represents the pool line.
Fig. 3. SEM images of γ′ (a, b) and the MC carbide (c, d, e, f). (a) and (c) at the substrate area, (b) and (d) at the deposited area, (e) at the molten pool line between deposited and substrate, (f) at high cladding layer of the deposited area.
Fig. 4. SEM images of the eutectic at the bottom of molten pool line (a, b), at first layer (c), at Nth cladding layer (d, e), on both sides of the molten pool line (f). The magnification of the area with orange boxes in (a) and (d) is shown in (b) and (e).
Fig. 6. SEM images of γ′ in the core-dendrit (a, c, e) and inter-dendrite region (b, d, f). (a) and (b) are at HAZ close to the molten line, (c) and (d) are at the middle of the HAZ, (e) and (f) are at substrate area.
Fig. 7. Tensile results of repaired DD32 single crystal at various temperatures: (a) typical tensile true stress-strain curves; (b) tensile strength; (c) elongation; (d) strain-hardening exponent.
Fig. 9. SEM images of the vertical section of tensile-ruptured samples at 660 °C (a, a1, a2) and 760 °C (b, b1, b2) of substrate area. (a1) and (b1) show the broken MC carbide. (a2) and (b2) show the MC distributed along the fracture surface.
Fig. 10. SEM images of the vertical section of tensile-ruptured samples at 900 °C (a, a1, a2), 1000 °C (b, b1, b2) and 1100 °C (c, c1, c2) of deposited area. (a1, b1, c1) show the pore. (a2, b2, c2) show the γ′ networks.
Fig. 14. (a) Schematic of the evolution of the cooling rate and volume fraction of (γ+ γ′) eutectic and (b) illustration of the distribution of the (γ+ γ′) eutectic with the increase of deposited height.
[1] | R.C. Reed, Superalloys: Foundations and Applications, Cambridge University Press, Cambridge, 2006. |
[2] | M.J. Donachie, Superalloys: A Technical Guide, ASM international, Materials Park, OH, 2002. |
[3] |
M. Gäumann, C. Bezençon, P. Canalis, W. Kurz, Acta Mater. 49 (2001) 1051-1062.
DOI URL |
[4] | S.S. Babu, S.A. David, J.W. Park, J.M. Vitek, Sci. Technol. Weld. Joining 9 (2013) 1-12. |
[5] | Y.J. Liang, H.M. Wang, Mater. Des. 102 (2016) 297-302. |
[6] | Y.J. Liang, J. Li, A. Li, X.T. Pang, H.M. Wang, Scr. Mater. 127 (2017) 58-62. |
[7] | Y.J. Liang, X. Cheng, J. Li, H.M. Wang, Mater. Des. 130 (2017) 197-207. |
[8] | T.J. Ma, X. Chen, W.Y. Li, X.W. Yang, Y. Zhang, S.Q. Yang, Mater. Des. 89 (2016) 85-93. |
[9] | M. Pröbstle, S. Neumeier, J. Hopfenmüller, L.P. Freund, T. Niendorf, D. Schwarze, M. Göken, Mater. Sci. Eng. A 674 (2016) 299-307. |
[10] | S. Sui, J. Chen, R. Zhang, X. Ming, F. Liu, X. Lin, Mater. Sci. Eng. A 688 (2017) 480-487. |
[11] | C. Zhong, J. Chen, S. Linnenbrink, A. Gasser, S. Sui, R. Poprawe, Mater. Des. 107 (2016) 386-392. |
[12] | T.D. Anderson, J.N. DuPont, T. DebRoy, Acta Mater. 58 (2010) 1441-1454. |
[13] | X.B. Meng, J.G. Li, Z.Q. Chen, Y.H. Wang, S.Z. Zhu, X.F. Bai, F. Wang, J. Zhang, T. Jin, X.F. Sun, Z.Q. Hu, Metall. Mater. Trans. A 44 (2012) 1955-1965. |
[14] | G. Wang, J. Liang, Y. Zhou, T. Jin, X. Sun, Z. Hu , J. Mater. Sci. Technol. 33 (2017) 499-506. |
[15] | G. Wang, J. Liang, Y. Zhou, L. Zhao, T. Jin, X. Sun , J. Mater. Sci. Technol. 34 (2018) 732-735. |
[16] | N. D’Souza, M.G. Ardakani, M. McLean, B.A. Shollock, Metall. Mater. Trans. A 31 (2000) 2877-2886. |
[17] | Y. Chen, F. Lu, K. Zhang, P. Nie, S.R.E. Hosseini, K. Feng, Z. Li, J. Alloys. Compd. 670 (2016) 312-321. |
[18] | P. Rong, N. Wang, L. Wang, R.N. Yang, W.J. Yao , J. Alloys. Compd. 676 (2016) 181-186. |
[19] | G. Wang, J. Liang, Y. Yang, Y. Shi, Y. Zhou, T. Jin, X. Sun , J. Mater. Sci. Technol. 34 (2018) 1315-1324. |
[20] | J.D. Hunt, S.Z. Lu, Metall. Mater. Trans. A 27 (1996) 611-623. |
[21] | J. Yu, X. Sun, N. Zhao, T. Jin, H. Guan, Z. Hu, Mater. Sci. Eng.A 460-461 (2007) 420-427. |
[22] | T.M. Pollock, A.S. Argon, Acta Metall. Mater. 40 (1992) 1-30. |
[23] | L. Cui, H. Su, J. Yu, J. Liu, T. Jin, X. Sun, Mater. Sci. Eng. A 696 (2017) 323-330. |
[24] | P. Caron, T. Khan, P. Veyssière, Philos. Mag. 57 (1988) 859-875. |
[25] | N. Matan, D.C. Cox, P. Carter, M.A. Rist, C.M.F. Rae, R.C. Reed, Acta Mater. 47 (1999) 1549-1563. |
[26] | C.M.F. Rae, R.C. Reed, Acta Mater. 55 (2007) 1067-1081. |
[27] | W. Kurz, D.J. Fisher, Acta Metall. 29 (1981) 11-20. |
[28] | Y. Zhou, Scr. Mater. 65 (2011) 281-284. |
[29] | Y.Z. Zhou, A. Volek, N.R. Green, Acta Mater. 56 (2008) 2631-2637. |
[30] | O.A. Ojo, N.L. Richards, M.C. Chaturvedi, Metall. Mater. Trans. A 37 (2006) 421-433. |
[31] | O.T. Ola, F.E. Doern, Mater. Des. 57 (2014) 51-59. |
[32] | B. Du, L. Sheng, Z. Hu, C. Cui, J. Yang, X. Sun, Adv. Mech. Eng. 10 (2018) 1-8. |
[33] | D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392. |
[34] | Y.J. Liang, J. Li, A. Li, X. Cheng, S. Wang, H.M. Wang , J. Alloys. Compd. 697 (2017) 174-181. |
[35] | J.M. Xiao, Alloy Phase and Phase Transition, Metallurgical Industry Press, Beijing, 1987 (in Chinese). |
[1] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[2] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[3] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[4] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[5] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[6] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[7] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[8] | Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel [J]. J. Mater. Sci. Technol., 2020, 42(0): 75-84. |
[9] | Varma S.K., Sanchez Francelia, Moncayo Sabastian, Ramana C.V.. Static and cyclic oxidation of Nb-Cr-V-W-Ta high entropy alloy in air from 600 to 1400 °C [J]. J. Mater. Sci. Technol., 2020, 38(0): 189-196. |
[10] | Liying Zhou, Wenxiong Chen, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding [J]. J. Mater. Sci. Technol., 2020, 43(0): 92-103. |
[11] | Silu Liu, Y.Z. Guo, Z.L. Pan, X.Z. Liao, E.J. Lavernia, Y.T. Zhu, Q.M. Wei, Yonghao Zhao. Microstructural softening induced adiabatic shear banding in Ti-23Nb-0.7Ta-2Zr-O gum metal [J]. J. Mater. Sci. Technol., 2020, 54(0): 31-39. |
[12] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park. A new guide for improving mechanical properties of non-equiatomic FeCoCrMnNi medium- and high-entropy alloys with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 59(0): 37-43. |
[13] | Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2020, 40(0): 15-23. |
[14] | Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding [J]. J. Mater. Sci. Technol., 2020, 46(0): 1-11. |
[15] | Shifeng Lin, Zhengwang Zhu, Shaofan Ge, Long Zhang, Dingming Liu, Yanxin Zhuang, Huameng Fu, Hong Li, Aimin Wang, Haifeng Zhang. Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy [J]. J. Mater. Sci. Technol., 2020, 50(0): 128-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||