J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (6): 1027-1038.DOI: 10.1016/j.jmst.2019.01.001
Previous Articles Next Articles
Z. Shenabcd*(), Y. Dingdd, J. Chene**(
), B. Shalch Amirkhize, J.Z. Wend, L. Fuabc, A.P. Gerlichd
Received:
2018-02-23
Revised:
2018-04-14
Accepted:
2018-10-11
Online:
2019-06-20
Published:
2019-06-19
Contact:
Shen Z.,Chen J.
About author:
1The authors contributed equally to this work.
Z. Shen, Y. Dingd, J. Chen, B. Shalch Amirkhiz, J.Z. Wen, L. Fu, A.P. Gerlich. Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds[J]. J. Mater. Sci. Technol., 2019, 35(6): 1027-1038.
Materials | Al | Fe | Si | Zn | Cr | Mg | Mn | B | Cu | P | Ti | C | S | Cr + Mo + Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al 6022 | Bal. | 0.05-0.20 | 0.80-1.5 | <0.25 | 0.1 | 0.07-0.45 | 0.02-0.10 | 0.01-0.11 | <0.15 | |||||
Al 5754 | Bal. | 0.4 | 0.4 | 2.6-3.2 | 0.5 | |||||||||
DP600 | Bal. | 1.5 | 2 | 0.04 | 0.14 | 0.015 | 1 | |||||||
22MnB5 | 0.03 | Bal. | 0.015 | 0.16 | 2.2 | 0.004 | 0.02 | 0.035 | 0.22 | |||||
Zn coating | 0.3 | 2.0 | 97.7 | |||||||||||
AlSi coating | 86.2 | 1.3 | 12.5 |
Table 1 Chemical compositions of as-received materials and coated materials (wt%) [39,40].
Materials | Al | Fe | Si | Zn | Cr | Mg | Mn | B | Cu | P | Ti | C | S | Cr + Mo + Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al 6022 | Bal. | 0.05-0.20 | 0.80-1.5 | <0.25 | 0.1 | 0.07-0.45 | 0.02-0.10 | 0.01-0.11 | <0.15 | |||||
Al 5754 | Bal. | 0.4 | 0.4 | 2.6-3.2 | 0.5 | |||||||||
DP600 | Bal. | 1.5 | 2 | 0.04 | 0.14 | 0.015 | 1 | |||||||
22MnB5 | 0.03 | Bal. | 0.015 | 0.16 | 2.2 | 0.004 | 0.02 | 0.035 | 0.22 | |||||
Zn coating | 0.3 | 2.0 | 97.7 | |||||||||||
AlSi coating | 86.2 | 1.3 | 12.5 |
Fig. 1. Microstructure of as-received base metals: (a) Al 6022-T4, (b) Zinc coated DP600 steel and (c) AlSi coated Usibor 1500 P steel (or 22MnB5 alloy).
Fig. 2. Schematic representation of refill FSSW process: (a) surface preheating while clamping and spindles rotation, (b) sleeve plunges into the sheets while pin moves upwards, (c) tool dwells at a predetermined penetration depth, d) spindles retract back, and (e) surface dwell to flatten the weld surface.
Fig. 4. (a) Cross section of the Al 6022/DP600 weld, (b) SEM image of magnified view of black rectangle in (a), STEM images in (c) magnified view of white rectangle in (b), (d) Al/Al-Zn layer interface, (e) Al-Zn layer/steel interface, (f) magnified view of red rectangle in (d), and (g) magnified view of blue rectangle in (e).
I | II | III | IV | V | VI | VII | VIII | |
---|---|---|---|---|---|---|---|---|
Fe | 0.1 | 0.1 | 37.8 | 1.1 | 100 | 0.6 | ||
Al | 5.8 | 7.01 | 92.2 | 65.3 | 43.6 | 1.2 | 66.2 | |
Zn | 94.2 | 92.8 | 7.5 | 34.4 | 12.2 | 97.7 | 33.2 | |
Si | 0.1 | 0.3 | 0.2 | 6.4 |
Table 2 EDX quantification results (wt%) indicated in Fig. 4(f) and (g).
I | II | III | IV | V | VI | VII | VIII | |
---|---|---|---|---|---|---|---|---|
Fe | 0.1 | 0.1 | 37.8 | 1.1 | 100 | 0.6 | ||
Al | 5.8 | 7.01 | 92.2 | 65.3 | 43.6 | 1.2 | 66.2 | |
Zn | 94.2 | 92.8 | 7.5 | 34.4 | 12.2 | 97.7 | 33.2 | |
Si | 0.1 | 0.3 | 0.2 | 6.4 |
Fig. 6. Bright field images (TEM) and the corresponding SAD patterns of selected area at (a) Al side (magnified view of yellow rectangle as shown in Fig. 4(c)), (b) Al-Zn eutectic structure and (c) zinc rich precipitate at Al-Zn grain boundary.
Fig. 7. Element maps of Fe, Al, Si and Zn in the Al-Zn layer/steel substrate interface at locations of (a) Fig. 4(e) and (b) Fig. 4(g), (c) SAD pattern of (a) region V in Fig. 4(g).
Fig. 10. (a) Optical microscope of the cross-section of Al5754/Al-Si coated weld (1.4 mm penetration depth) and magnified views of the (b) blue rectangle and (c) red rectangle in (a), (d) magnified view of red rectangle in (b).
IX | X | XI | XII | |
---|---|---|---|---|
Al | 46.13 | 54.8 | 0.34 | 26.3 |
Fe | 51.28 | 36.9 | 98.51 | 14 |
Si | 2.57 | 8.29 | 1.15 | 59.7 |
Table 3 EDX quantification results (wt%) indicated in Fig. 11(a).
IX | X | XI | XII | |
---|---|---|---|---|
Al | 46.13 | 54.8 | 0.34 | 26.3 |
Fe | 51.28 | 36.9 | 98.51 | 14 |
Si | 2.57 | 8.29 | 1.15 | 59.7 |
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
Fe | 0.63 | 28.34 | 41.39 | 1.30 | ||
Al | 50.88 | 52.89 | 46.10 | 43.85 | 56.06 | 100.00 |
Zn | 48.94 | 45.83 | 25.05 | 13.49 | 42.43 | |
Si | 0.17 | 0.65 | 0.51 | 1.27 | 0.21 |
Table 4 EDX quantification results (wt%) indicated in Fig. 13.
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
Fe | 0.63 | 28.34 | 41.39 | 1.30 | ||
Al | 50.88 | 52.89 | 46.10 | 43.85 | 56.06 | 100.00 |
Zn | 48.94 | 45.83 | 25.05 | 13.49 | 42.43 | |
Si | 0.17 | 0.65 | 0.51 | 1.27 | 0.21 |
` | I | II | III | IV | V | VI | VII | VIII | IX |
---|---|---|---|---|---|---|---|---|---|
Fe | 3.13 | 4.74 | 2.91 | 56.41 | 14.57 | 17.26 | |||
Al | 62.01 | 61.59 | 46.41 | 31.68 | 71.45 | 73.52 | 66.9 | 58.52 | 62.61 |
Zn | 34.86 | 33.67 | 50.68 | 10.99 | 10.9 | 7.89 | 33.1 | 41.2 | 36.83 |
Si | 0.92 | 3.08 | 1.33 | 0.28 | 0.56 |
Table 5 EDX quantification results (wt%) indicated in Fig. 14.
` | I | II | III | IV | V | VI | VII | VIII | IX |
---|---|---|---|---|---|---|---|---|---|
Fe | 3.13 | 4.74 | 2.91 | 56.41 | 14.57 | 17.26 | |||
Al | 62.01 | 61.59 | 46.41 | 31.68 | 71.45 | 73.52 | 66.9 | 58.52 | 62.61 |
Zn | 34.86 | 33.67 | 50.68 | 10.99 | 10.9 | 7.89 | 33.1 | 41.2 | 36.83 |
Si | 0.92 | 3.08 | 1.33 | 0.28 | 0.56 |
Fig. 16. Fracture surface of the Al5754/AlSi coated steel weld: (a) overall and (b) magnified view in the white rectangle in a (0.9 mm penetration, 1.42 kN).
Fig. 18. Fracture surface of the Al5754/AlSi coated steel weld: (a) overall and (b) magnified view in the white rectangle in a (1.4 mm penetration, 4.44 kN).
Region | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Al | 53.65 | 95.86 | 95.99 | 92.66 | 93.58 | 92.93 | 95.14 | 93.76 | 95.15 |
Fe | 38.23 | 1.07 | 0.72 | 0.59 | 1.79 | 0.83 | 1.07 | 0.42 | 0.45 |
Si | 8.12 | 2.26 | 2.38 | 4.91 | 2.80 | 4.15 | 2.60 | 4.23 | 2.50 |
Mg | 0.81 | 0.91 | 1.84 | 1.83 | 2.09 | 1.19 | 1.59 | 1.90 |
Table 6 EDX quantification results (wt%) indicated in Fig. 16.
Region | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Al | 53.65 | 95.86 | 95.99 | 92.66 | 93.58 | 92.93 | 95.14 | 93.76 | 95.15 |
Fe | 38.23 | 1.07 | 0.72 | 0.59 | 1.79 | 0.83 | 1.07 | 0.42 | 0.45 |
Si | 8.12 | 2.26 | 2.38 | 4.91 | 2.80 | 4.15 | 2.60 | 4.23 | 2.50 |
Mg | 0.81 | 0.91 | 1.84 | 1.83 | 2.09 | 1.19 | 1.59 | 1.90 |
I | II | III | IV | V | VI | |
---|---|---|---|---|---|---|
Al | 97.52 | 96.74 | 97.34 | 56.32 | 56.70 | 53.20 |
Fe | 1.64 | 0.69 | 0.29 | 32.13 | 32.31 | 36.21 |
Si | 0.26 | 0.36 | 11.55 | 10.98 | 10.59 | |
Mg | 0.57 | 2.22 | 2.37 |
Table 7 EDX quantification results (wt%) indicated in Fig. 17.
I | II | III | IV | V | VI | |
---|---|---|---|---|---|---|
Al | 97.52 | 96.74 | 97.34 | 56.32 | 56.70 | 53.20 |
Fe | 1.64 | 0.69 | 0.29 | 32.13 | 32.31 | 36.21 |
Si | 0.26 | 0.36 | 11.55 | 10.98 | 10.59 | |
Mg | 0.57 | 2.22 | 2.37 |
Region | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Al | 93.5 | 54.0 | 51.7 | 51.7 | 96.7 | 96.4 | 51.9 | 95.0 | 95.8 |
Fe | 2.8 | 38.2 | 40.6 | 40.5 | 0.1 | 40.9 | 0.6 | 0.6 | |
Si | 3.7 | 7.8 | 7.7 | 7.8 | 1.1 | 1.3 | 7.1 | 3.1 | 1.6 |
Mg | 2.2 | 2.2 | 0.1 | 1.3 | 2.0 |
Table 8 EDX quantification results (wt%) indicated in Fig. 18.
Region | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Al | 93.5 | 54.0 | 51.7 | 51.7 | 96.7 | 96.4 | 51.9 | 95.0 | 95.8 |
Fe | 2.8 | 38.2 | 40.6 | 40.5 | 0.1 | 40.9 | 0.6 | 0.6 | |
Si | 3.7 | 7.8 | 7.7 | 7.8 | 1.1 | 1.3 | 7.1 | 3.1 | 1.6 |
Mg | 2.2 | 2.2 | 0.1 | 1.3 | 2.0 |
I | II | III | IV | V | VI | |
---|---|---|---|---|---|---|
Al | 94.53 | 93.02 | 96.41 | 54.80 | 54.54 | 54.52 |
Fe | 3.60 | 4.00 | 2.17 | 32.70 | 33.84 | 33.44 |
Si | 0.92 | 1.58 | 12.50 | 11.62 | 12.04 | |
Mg | 0.95 | 1.40 | 1.42 |
Table 9 EDX quantification results (wt%) indicated in Fig. 19.
I | II | III | IV | V | VI | |
---|---|---|---|---|---|---|
Al | 94.53 | 93.02 | 96.41 | 54.80 | 54.54 | 54.52 |
Fe | 3.60 | 4.00 | 2.17 | 32.70 | 33.84 | 33.44 |
Si | 0.92 | 1.58 | 12.50 | 11.62 | 12.04 | |
Mg | 0.95 | 1.40 | 1.42 |
|
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Qiang Ren, Yuexin Zhang, Ying Ren, Lifeng Zhang, Jujin Wang, Yadong Wang. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab [J]. J. Mater. Sci. Technol., 2021, 61(0): 147-158. |
[3] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[4] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[5] | Jiawei Ding, Haitao Wang, En-Hou Han. A multiphysics model for studying transient crevice corrosion of stainless steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 186-196. |
[6] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[7] | Edward Charles Henry Crawford O’ Brien, Hemantha Kumar Yeddu. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears [J]. J. Mater. Sci. Technol., 2020, 49(0): 157-165. |
[8] | Haiwen Luo, Xiaohui Wang, Zhenbao Liu, Zhiyong Yang. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51(0): 130-136. |
[9] | Peng Yu, Weimin Ma. A modified theta projection model for creep behavior of RPV steel 16MND5 [J]. J. Mater. Sci. Technol., 2020, 47(0): 231-242. |
[10] | Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel [J]. J. Mater. Sci. Technol., 2020, 45(0): 35-43. |
[11] | Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel [J]. J. Mater. Sci. Technol., 2020, 46(0): 191-200. |
[12] | Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel [J]. J. Mater. Sci. Technol., 2020, 46(0): 211-224. |
[13] | Hongwang Zhang, Yiming Zhao, Yuhui Wang, Chunling Zhang, Yan Peng. On the microstructural evolution pattern toward nano-scale of an AISI 304 stainless steel during high strain rate surface deformation [J]. J. Mater. Sci. Technol., 2020, 44(0): 148-159. |
[14] | R.Z. Xu, Q. Yang, D.R. Ni, B.L. Xiao, C.Z. Liu, Z.Y. Ma. Influencing mechanism of pre-existing nanoscale Al5Fe2 phase on Mg-Fe interface in friction stir spot welded Al-free ZK60-Q235 joint [J]. J. Mater. Sci. Technol., 2020, 42(0): 220-228. |
[15] | Junlei Wang, Tiansui Zhang, Xinxin Zhang, Muhammed Asif, Lipei Jiang, Shuang Dong, Tingyue Gu, Hongfang Liu. Inhibition effects of benzalkonium chloride on Chlorella vulgaris induced corrosion of carbon steel [J]. J. Mater. Sci. Technol., 2020, 43(0): 14-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||