J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (3): 418-426.DOI: 10.1016/j.jmst.2018.10.004
• Research Article • Previous Articles Next Articles
M. Todeaab, A. Vulpoia, C. Popac, P. Berced, S. Simona*()
Received:
2018-07-06
Revised:
2018-09-11
Accepted:
2018-09-21
Online:
2019-03-15
Published:
2019-01-18
Contact:
Simon S.
About author:
1 These authors contributed equally to this work.
M. Todea, A. Vulpoi, C. Popa, P. Berce, S. Simon. Effect of different surface treatments on bioactivity of porous titanium implants[J]. J. Mater. Sci. Technol., 2019, 35(3): 418-426.
Fig. 2. SEM images of Ti6Al7Nb implants surfaces for (a) control, (b) heat treated, (c) chemically treated, (d) TiO2-SiO2 infiltrated, (e) CaPpH=4.5 infiltrated and (f) CaPpH=10 infiltrated (scale bars: 5?μm).
Elements → Sample↓ | O | Ti | Al | Nb | Si | Ca | P | Ca/P |
---|---|---|---|---|---|---|---|---|
Theoretical composition of Ti6Al7Nb | 85.8 | 10.4 | 3.8 | |||||
SLM derived control sample | 10 | 78.3 | 9 | 2.7 | ||||
Thermally treated | 21.1 | 65.1 | 11.1 | 2.7 | ||||
Chemically treated | 38.9 | 51.6 | 7.1 | 2.4 | ||||
Infiltrated with SiO2-TiO2 | 39.7 | 48.3 | 7.7 | 2.1 | 2.3 | - | - | |
Infiltrated with CaPpH=4.5 | 51.9 | 24 | 3.1 | 1 | - | 13.1 | 6.9 | 1.96 |
Infiltrated with CaPpH=10 | 42.3 | 35.8 | 4.2 | 1.4 | - | 8.8 | 7.6 | 1.16 |
Table 1 Chemical composition of Ti6Al7Nb samples obtained from EDX analysis.
Elements → Sample↓ | O | Ti | Al | Nb | Si | Ca | P | Ca/P |
---|---|---|---|---|---|---|---|---|
Theoretical composition of Ti6Al7Nb | 85.8 | 10.4 | 3.8 | |||||
SLM derived control sample | 10 | 78.3 | 9 | 2.7 | ||||
Thermally treated | 21.1 | 65.1 | 11.1 | 2.7 | ||||
Chemically treated | 38.9 | 51.6 | 7.1 | 2.4 | ||||
Infiltrated with SiO2-TiO2 | 39.7 | 48.3 | 7.7 | 2.1 | 2.3 | - | - | |
Infiltrated with CaPpH=4.5 | 51.9 | 24 | 3.1 | 1 | - | 13.1 | 6.9 | 1.96 |
Infiltrated with CaPpH=10 | 42.3 | 35.8 | 4.2 | 1.4 | - | 8.8 | 7.6 | 1.16 |
Samples | O | Ti | Al | Nb | Na | Cl | Si | Ca | P | Ca/P |
---|---|---|---|---|---|---|---|---|---|---|
Theoretical composition of Ti6Al7Nb | 85.8 | 10.4 | 3.8 | |||||||
SLM derived control sample | 63.9 | 13.6 | 22.1 | 0.4 | ||||||
Thermally treated | 67.9 | 17.0 | 14.8 | 0.3 | ||||||
Chemically treated | 67.2 | 23.5 | 2.0 | 1.3 | 5.6 | 0.4 | ||||
Infiltrated with SiO2-TiO2 | 66.4 | 14.0 | 8.1 | 0.5 | 11 | |||||
Infiltrated with CaPpH=4.5 | 59.5 | 3.0 | 1.9 | 0.4 | 23.3 | 11.9 | 1.96 | |||
Infiltrated with CaPpH=10 | 57.7 | 4.2 | 6.8 | 0.5 | 16.9 | 13.9 | 1.22 |
Table 2 Elemental composition (at.%) of titanium alloy samples obtained from XPS analysis, wherein the carbon content was neglected.
Samples | O | Ti | Al | Nb | Na | Cl | Si | Ca | P | Ca/P |
---|---|---|---|---|---|---|---|---|---|---|
Theoretical composition of Ti6Al7Nb | 85.8 | 10.4 | 3.8 | |||||||
SLM derived control sample | 63.9 | 13.6 | 22.1 | 0.4 | ||||||
Thermally treated | 67.9 | 17.0 | 14.8 | 0.3 | ||||||
Chemically treated | 67.2 | 23.5 | 2.0 | 1.3 | 5.6 | 0.4 | ||||
Infiltrated with SiO2-TiO2 | 66.4 | 14.0 | 8.1 | 0.5 | 11 | |||||
Infiltrated with CaPpH=4.5 | 59.5 | 3.0 | 1.9 | 0.4 | 23.3 | 11.9 | 1.96 | |||
Infiltrated with CaPpH=10 | 57.7 | 4.2 | 6.8 | 0.5 | 16.9 | 13.9 | 1.22 |
Sample | Component (1) | Component (2) | Component (3) | Component (4) | ||||
---|---|---|---|---|---|---|---|---|
B.E. (eV) | f (%) | B.E. (eV) | f (%) | B.E. (eV) | f (%) | B.E. (eV) | f (%) | |
Control | 530.1 | 60.0 | 531.5 | 25.2 | 532.5 | 14.8 | ||
Heat treated | 529.6 | 65.3 | 531.0 | 21.4 | 532.1 | 13.3 | ||
Chemically treated | 529.5 | 35.4 | 531.3 | 42.4 | 532.2 | 11.6 | 533.4 | 10.6 |
Infiltrated with SiO2-TiO2 | 529.3 | 56.0 | 531.2 | 29.0 | 532.3 | 15.0 | ||
Infiltrated with CaPpH=4.5 | 529.5 | 29.7 | 531.2 | 58.0 | 532.4 | 12.3 | ||
Infiltrated with CaPpH=10 | 530.2 | 25.1 | 531.3 | 60.3 | 532.4 | 14.6 |
Table 3 Fractions (f) of the components with different binding energies (B.E.) obtained by deconvolution of O 1s core level spectra.
Sample | Component (1) | Component (2) | Component (3) | Component (4) | ||||
---|---|---|---|---|---|---|---|---|
B.E. (eV) | f (%) | B.E. (eV) | f (%) | B.E. (eV) | f (%) | B.E. (eV) | f (%) | |
Control | 530.1 | 60.0 | 531.5 | 25.2 | 532.5 | 14.8 | ||
Heat treated | 529.6 | 65.3 | 531.0 | 21.4 | 532.1 | 13.3 | ||
Chemically treated | 529.5 | 35.4 | 531.3 | 42.4 | 532.2 | 11.6 | 533.4 | 10.6 |
Infiltrated with SiO2-TiO2 | 529.3 | 56.0 | 531.2 | 29.0 | 532.3 | 15.0 | ||
Infiltrated with CaPpH=4.5 | 529.5 | 29.7 | 531.2 | 58.0 | 532.4 | 12.3 | ||
Infiltrated with CaPpH=10 | 530.2 | 25.1 | 531.3 | 60.3 | 532.4 | 14.6 |
Fig. 13. SEM images of Ti6Al7Nb implants surfaces after 14 days of SBF immersion for (a) control, (b) heat treated, (c) chemically treated, (d) TiO2-SiO2 infiltrated, (e) CaPpH=4.5 infiltrated and (f) CaPpH=10 infiltrated (scale bars of (a-c, e, f): 5?μm, scale bar of (d): 20?μm).
Elements → Sample↓ | O | Ti | Al | Nb | Si | Ca | P | Cl | Na | Mg | Ca/P |
---|---|---|---|---|---|---|---|---|---|---|---|
SLM derived control sample | 10.3 | 72.5 | 13.3 | 3.4 | 0.1 | 0.4 | 0.25 | ||||
Thermally treated | 13.1 | 69.4 | 13.8 | 3.6 | 0.02 | 0.1 | 0.2 | ||||
Chemically treated | 33.1 | 57.8 | 3.9 | 1.5 | 0.7 | 0.4 | 0.7 | 1.9 | 1.75 | ||
Infiltrated with SiO2-TiO2 | 39 | 48.1 | 3.2 | 1.3 | 3.2 | 3.4 | 0.3 | 0.4 | 1.1 | 11.33 | |
Infiltrated with CaPpH=4.5 | 45.3 | 37.6 | 5.7 | 1.8 | - | 3.1 | 2.7 | 0.8 | 3.0 | 1.15 | |
Infiltrated with CaPpH=10 | 50.7 | 11.3 | 0.6 | 0.2 | - | 19.4 | 14.8 | 0.7 | 1.3 | 1.0 | 1.31 |
Table 4 Chemical composition of Ti6Al7Nb samples obtained from EDX analysis after 14 days immersion in SBF.
Elements → Sample↓ | O | Ti | Al | Nb | Si | Ca | P | Cl | Na | Mg | Ca/P |
---|---|---|---|---|---|---|---|---|---|---|---|
SLM derived control sample | 10.3 | 72.5 | 13.3 | 3.4 | 0.1 | 0.4 | 0.25 | ||||
Thermally treated | 13.1 | 69.4 | 13.8 | 3.6 | 0.02 | 0.1 | 0.2 | ||||
Chemically treated | 33.1 | 57.8 | 3.9 | 1.5 | 0.7 | 0.4 | 0.7 | 1.9 | 1.75 | ||
Infiltrated with SiO2-TiO2 | 39 | 48.1 | 3.2 | 1.3 | 3.2 | 3.4 | 0.3 | 0.4 | 1.1 | 11.33 | |
Infiltrated with CaPpH=4.5 | 45.3 | 37.6 | 5.7 | 1.8 | - | 3.1 | 2.7 | 0.8 | 3.0 | 1.15 | |
Infiltrated with CaPpH=10 | 50.7 | 11.3 | 0.6 | 0.2 | - | 19.4 | 14.8 | 0.7 | 1.3 | 1.0 | 1.31 |
Elements → Sample↓ | O | Ti | Al | Nb | Si | Ca | P | Ca/P |
---|---|---|---|---|---|---|---|---|
SLM derived control sample | 62.6 | 21.3 | 8.9 | 0.6 | - | 2.6 | 4.0 | 0.65 |
Thermally treated | 66.5 | 18.1 | 7.4 | 0.7 | - | 4.7 | 2.6 | 1.81 |
Chemically treated | 69.2 | 20.8 | 1.2 | 1.3 | - | 4.0 | 3.5 | 1.14 |
Infiltrated with SiO2-TiO2 | 65.7 | 11.5 | 2.4 | 0.2 | 11.2 | 4.6 | 4.4 | 1.05 |
Infiltrated with CaPpH=4.5 | 60.8 | 3.6 | 2.1 | 0.3 | - | 20.5 | 12.7 | 1.61 |
Infiltrated with CaPpH=10 | 58.2 | 2.6 | 2.4 | 0.3 | - | 19.7 | 16.8 | 1.17 |
Table 5 Elemental composition (at %) of titanium alloy samples from XPS analysis obtained after 14 days immersion in SBF, wherein the carbon content was neglected.
Elements → Sample↓ | O | Ti | Al | Nb | Si | Ca | P | Ca/P |
---|---|---|---|---|---|---|---|---|
SLM derived control sample | 62.6 | 21.3 | 8.9 | 0.6 | - | 2.6 | 4.0 | 0.65 |
Thermally treated | 66.5 | 18.1 | 7.4 | 0.7 | - | 4.7 | 2.6 | 1.81 |
Chemically treated | 69.2 | 20.8 | 1.2 | 1.3 | - | 4.0 | 3.5 | 1.14 |
Infiltrated with SiO2-TiO2 | 65.7 | 11.5 | 2.4 | 0.2 | 11.2 | 4.6 | 4.4 | 1.05 |
Infiltrated with CaPpH=4.5 | 60.8 | 3.6 | 2.1 | 0.3 | - | 20.5 | 12.7 | 1.61 |
Infiltrated with CaPpH=10 | 58.2 | 2.6 | 2.4 | 0.3 | - | 19.7 | 16.8 | 1.17 |
Sample | Component (1) | Component (2) | Component (3) | |||
---|---|---|---|---|---|---|
B.E. (eV) | f (%) | B.E. (eV) | f (%) | B.E. (eV) | f (%) | |
Control | 529.8 | 48.3 | 531.4 | 27.1 | 532.6 | 24.6 |
Heat treated | 529.7 | 65.5 | 531.2 | 21.6 | 532.6 | 12.9 |
Chemically treated | 530 | 69.8 | 531.3 | 18.4 | 532.6 | 11.8 |
Infiltrated with SiO2-TiO2 | 529.9 | 44 | 531.3 | 31.8 | 532.6 | 24.2 |
Infiltrated with CaPpH=4.5 | 529.5 | 22.3 | 531.3 | 48 | 532.6 | 29.7 |
Infiltrated with CaPpH=10 | 529.6 | 27.2 | 531.3 | 57.5 | 532.6 | 15.3 |
Table 6 Fractions (f) of the components with different binding energies (B.E.) obtained by deconvolution of O 1s core level spectra recorded after samples immersion for 14 days in SBF.
Sample | Component (1) | Component (2) | Component (3) | |||
---|---|---|---|---|---|---|
B.E. (eV) | f (%) | B.E. (eV) | f (%) | B.E. (eV) | f (%) | |
Control | 529.8 | 48.3 | 531.4 | 27.1 | 532.6 | 24.6 |
Heat treated | 529.7 | 65.5 | 531.2 | 21.6 | 532.6 | 12.9 |
Chemically treated | 530 | 69.8 | 531.3 | 18.4 | 532.6 | 11.8 |
Infiltrated with SiO2-TiO2 | 529.9 | 44 | 531.3 | 31.8 | 532.6 | 24.2 |
Infiltrated with CaPpH=4.5 | 529.5 | 22.3 | 531.3 | 48 | 532.6 | 29.7 |
Infiltrated with CaPpH=10 | 529.6 | 27.2 | 531.3 | 57.5 | 532.6 | 15.3 |
|
[1] | Peng Chen, Sheng Li, Yinghao Zhou, Ming Yan, Moataz M. Attallah. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying [J]. J. Mater. Sci. Technol., 2020, 43(0): 40-43. |
[2] | Dongjun Wang, Hao Li, Wei Zheng. Oxidation behaviors of TA15 titanium alloy and TiBw reinforced TA15 matrix composites prepared by spark plasma sintering [J]. J. Mater. Sci. Technol., 2020, 37(0): 46-54. |
[3] | J.J.J. Nivas, E. Allahyari, A. Vecchione, Q. Hao, S. Amoruso, X. Wang. Laser ablation and structuring of CdZnTe with femtosecond laser pulses [J]. J. Mater. Sci. Technol., 2020, 48(0): 180-185. |
[4] | Jian Xiao, Yizao Wan, Zhiwei Yang, Yuan Huang, Fanglian Yao, Honglin Luo. Bioactive glass nanotube scaffold with well-ordered mesoporous structure for improved bioactivity and controlled drug delivery [J]. J. Mater. Sci. Technol., 2019, 35(9): 1959-1965. |
[5] | Kaur Tejinder, Thirugnanam Arunachalam. Effect of Porous Activated Charcoal Reinforcement on Mechanical and In-Vitro Biological Properties of Polyvinyl Alcohol Composite Scaffolds [J]. J. Mater. Sci. Technol., 2017, 33(7): 734-743. |
[6] | Cheng Youliang, Xia Bingbing, Fang Changqing, Yang Lu. Structure, mechanical and thermal properties of BMI/E-44/CNTs ternary composites via amination method [J]. J. Mater. Sci. Technol., 2017, 33(10): 1187-1194. |
[7] | Naudin G.,Entradas T.,Barrocas B.,Monteiro O.C.. Titanate Nanorods Modified with Nanocrystalline ZnS Particles and Their Photocatalytic Activity on Pollutant Removal [J]. J. Mater. Sci. Technol., 2016, 32(11): 1122-1128. |
[8] | Camelia Matei Ghimbeu, Aleksandr I. Egunov, Andrey S. Ryzhikov, Valeriy A. Luchnikov. Carbon-Iron Microfibrous Material Produced by Thermal Treatment of Self-rolled Poly(4-vinyl pyridine) Films Loaded by Fe2O3 Particles [J]. J. Mater. Sci. Technol., 2015, 31(9): 881-887. |
[9] | Nanting Li, Shaochun Tang, Xiangkang Meng. Reduced Graphene Oxide Supported Bimetallic Cobalt-Palladium Nanoparticles with High Catalytic Activity towards Formic Acid Electro-oxidation [J]. J. Mater. Sci. Technol., 2015, 31(1): 30-36. |
[10] | Nanting Li, Shaochun Tang, Xiangkang Meng. Facile Synthesis of Bimetallic Au@Pd Nanoparticles with Core-shell Structures on Graphene Nanosheets [J]. J. Mater. Sci. Technol., 2014, 30(11): 1071-1077. |
[11] | Hezhou Ye, Xing Yang Liu, Hanping Hong. Fabrication of Titanium/Fluorapatite Composites and In Vitro Behavior in Simulated Body Fluid [J]. J. Mater. Sci. Technol., 2013, 29(6): 523-532. |
[12] | Tiantian He, Yi Xiong, Zhiqiang Guo, Lingfeng Zhang, Fengzhang Ren, Alex A. Volinsky. Microstructure and Hardness of Laser Shocked Ultra-fine-grained Aluminum [J]. J Mater Sci Technol, 2011, 27(9): 793-796. |
[13] | Xifeng Lu Qilong Wang Deliang Cui. Preparation and Photocatalytic Properties of g-C3N4/TiO2 Hybrid Composite [J]. J Mater Sci Technol, 2010, 26(10): 925-930. |
[14] | Qiang FU, Nai ZHOU, Wenhai HUANG, Deping WANG, Liying ZHANG. Formation and Characterization of Bone-like Nanoscale Hydroxyapatite in Glass Bone Cement [J]. J Mater Sci Technol, 2004, 20(06): 772-774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||