J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (5): 878-885.DOI: 10.1016/j.jmst.2017.02.011
Special Issue: 2016-2017摩擦搅拌焊接专辑; Aluminum Alloys-2018; FSW-and-FSP-articles 2018
• Orginal Article • Previous Articles Next Articles
Zhiwu Xua(), Zhengwei Lia, Shude Jib(
), Liguo Zhangb
Received:
2017-01-03
Revised:
2017-02-06
Accepted:
2017-02-14
Online:
2018-05-10
Published:
2018-05-04
Zhiwu Xu, Zhengwei Li, Shude Ji, Liguo Zhang. Refill friction stir spot welding of 5083-O aluminum alloy[J]. J. Mater. Sci. Technol., 2018, 34(5): 878-885.
Parameters | Symbol | Level Low (-1) | Level Middle (0) | Level High (1) |
---|---|---|---|---|
Rotating speed (rpm) | RS | 2300 | 2500 | 2700 |
Plunge depth (mm) | PD | 2.2 | 2.3 | 2.4 |
Refilling time (s) | RT | 1.5 | 2.5 | 3.5 |
Table 1 Welding parameters and their levels.
Parameters | Symbol | Level Low (-1) | Level Middle (0) | Level High (1) |
---|---|---|---|---|
Rotating speed (rpm) | RS | 2300 | 2500 | 2700 |
Plunge depth (mm) | PD | 2.2 | 2.3 | 2.4 |
Refilling time (s) | RT | 1.5 | 2.5 | 3.5 |
No. | RS (rpm) | PD (mm) | RT (s) | Failure load (kN) |
---|---|---|---|---|
1 | 2500 | 2.3 | 2.5 | 6.99 |
2 | 2300 | 2.3 | 3.5 | 7.17 |
3 | 2700 | 2.3 | 3.5 | 5.0 |
4 | 2300 | 2.3 | 1.5 | 6.5 |
5 | 2500 | 2.2 | 3.5 | 6.4 |
6 | 2500 | 2.4 | 3.5 | 7.36 |
7 | 2500 | 2.4 | 1.5 | 7.4 |
8 | 2700 | 2.2 | 2.5 | 6.3 |
9 | 2500 | 2.2 | 1.5 | 6.75 |
10 | 2300 | 2.4 | 2.5 | 7.3 |
11 | 2500 | 2.3 | 2.5 | 7.1 |
12 | 2500 | 2.3 | 2.5 | 6.8 |
13 | 2500 | 2.3 | 2.5 | 6.95 |
14 | 2700 | 2.3 | 1.5 | 6.8 |
15 | 2500 | 2.3 | 2.5 | 7.38 |
16 | 2300 | 2.2 | 2.5 | 7 |
17 | 2700 | 2.4 | 2.5 | 5.7 |
Table 2 Box-Behnken design matrix and experimental results.
No. | RS (rpm) | PD (mm) | RT (s) | Failure load (kN) |
---|---|---|---|---|
1 | 2500 | 2.3 | 2.5 | 6.99 |
2 | 2300 | 2.3 | 3.5 | 7.17 |
3 | 2700 | 2.3 | 3.5 | 5.0 |
4 | 2300 | 2.3 | 1.5 | 6.5 |
5 | 2500 | 2.2 | 3.5 | 6.4 |
6 | 2500 | 2.4 | 3.5 | 7.36 |
7 | 2500 | 2.4 | 1.5 | 7.4 |
8 | 2700 | 2.2 | 2.5 | 6.3 |
9 | 2500 | 2.2 | 1.5 | 6.75 |
10 | 2300 | 2.4 | 2.5 | 7.3 |
11 | 2500 | 2.3 | 2.5 | 7.1 |
12 | 2500 | 2.3 | 2.5 | 6.8 |
13 | 2500 | 2.3 | 2.5 | 6.95 |
14 | 2700 | 2.3 | 1.5 | 6.8 |
15 | 2500 | 2.3 | 2.5 | 7.38 |
16 | 2300 | 2.2 | 2.5 | 7 |
17 | 2700 | 2.4 | 2.5 | 5.7 |
Fig. 1. Cross section of the RFSSW joint: (a) joint without surface indentation, (b) incomplete refilling, (c) void, (d) joint with a 0.3 mm surface indentation, (e) magnified view of the indentation and (f) hook.
Fig. 5. Microhardness of the RFSSW joint: (a) upper sheet and (b) lower sheet using different rotating speeds, (c) upper sheet and (d) lower sheet using different refilling time.
Source | Sum of Squares | df | Mean square | F Value | p-value prob > F |
---|---|---|---|---|---|
Model | 5.77 | 9 | 0.64 | 6.11 | 0.0131 |
RS | 2.17 | 1 | 2.17 | 20.70 | 0.0026 |
PD | 0.21 | 1 | 0.21 | 2.04 | 0.1690 |
RT | 0.29 | 1 | 0.29 | 2.75 | 0.1412 |
RS × PD | 1.20 | 1 | 0.20 | 1.93 | 0.2075 |
RS × RT | 1.53 | 1 | 1.53 | 14.53 | 0.0066 |
PD × RT | 0.024 | 1 | 0.024 | 0.23 | 0.6470 |
RS2 | 1.23 | 1 | 1.23 | 11.67 | 0.0112 |
PD2 | 0.021 | 1 | 0.021 | 0.20 | 0.6687 |
RT2 | 0.079 | 1 | 0.079 | 0.75 | 0.4144 |
Residual | 0.73 | 7 | 0.10 | ||
Lack of fit | 0.55 | 3 | 0.18 | 3.90 | 0.1109 |
Pure error | 0.19 | 4 | 0.047 | ||
Cor total | 6.51 | 16 |
Table 3 Analysis of the variable table.
Source | Sum of Squares | df | Mean square | F Value | p-value prob > F |
---|---|---|---|---|---|
Model | 5.77 | 9 | 0.64 | 6.11 | 0.0131 |
RS | 2.17 | 1 | 2.17 | 20.70 | 0.0026 |
PD | 0.21 | 1 | 0.21 | 2.04 | 0.1690 |
RT | 0.29 | 1 | 0.29 | 2.75 | 0.1412 |
RS × PD | 1.20 | 1 | 0.20 | 1.93 | 0.2075 |
RS × RT | 1.53 | 1 | 1.53 | 14.53 | 0.0066 |
PD × RT | 0.024 | 1 | 0.024 | 0.23 | 0.6470 |
RS2 | 1.23 | 1 | 1.23 | 11.67 | 0.0112 |
PD2 | 0.021 | 1 | 0.021 | 0.20 | 0.6687 |
RT2 | 0.079 | 1 | 0.079 | 0.75 | 0.4144 |
Residual | 0.73 | 7 | 0.10 | ||
Lack of fit | 0.55 | 3 | 0.18 | 3.90 | 0.1109 |
Pure error | 0.19 | 4 | 0.047 | ||
Cor total | 6.51 | 16 |
Fig. 7. Fracture modes of the RFSSW joint: (a) joint morphology, (b) hook and (c) schematic of the shear fracture mode, (d) joint morphology, (e) hook and (f) schematic of the shear-plug fracture mode, (g) joint morphology, (h) hook and (i) schematic of the plug fracture mode.
|
[1] | Ting Wu, Carsten Blawert, Mikhail L.Zheludkevich. Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process [J]. J. Mater. Sci. Technol., 2020, 50(0): 75-85. |
[2] | Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys [J]. J. Mater. Sci. Technol., 2020, 40(0): 47-53. |
[3] | Z. Shen, Y. Dingd, J. Chen, B. Shalch Amirkhiz, J.Z. Wen, L. Fu, A.P. Gerlich. Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds [J]. J. Mater. Sci. Technol., 2019, 35(6): 1027-1038. |
[4] | Hong Yu, Ning Wang, Renguo Guan, Di Tie, Zheng Li, Yanan An, Yang Zhang. Evolution of secondary phase particles during deformation of Al-5Ti-1B master alloy and their effect on α-Al grain refinement [J]. J. Mater. Sci. Technol., 2018, 34(12): 2297-2306. |
[5] | F.F. Wang, W.Y. Li, J. Shen, Q. Wen, J.F. dos Santos. Improving weld formability by a novel dual-rotation bobbin tool friction stir welding [J]. J. Mater. Sci. Technol., 2018, 34(1): 135-139. |
[6] | Sun Shao-Bo, Zheng Li-Jing, Liu Jin-Hui, Zhang Hu. Selective Laser Melting of an Al-Fe-V-Si Alloy: Microstructural Evolution and Thermal Stability [J]. J. Mater. Sci. Technol., 2017, 33(4): 389-396. |
[7] | Yu Kun, Jiang Zhenguo, Li Chaowen, Chen Shuangjian, Tao Wang, Zhou1 Xingtai, Li Zhijun. Microstructure and Mechanical Properties of Fiber Laser Welded GH3535 Superalloy [J]. J. Mater. Sci. Technol., 2017, 33(11): 1289-1299. |
[8] | Zhou Yanchun, Dai Fuzhi, Xiang Huimin, Liu Bin, Feng Zhihai. Shear anisotropy: Tuning high temperature metal hexaborides from soft to extremely hard [J]. J. Mater. Sci. Technol., 2017, 33(11): 1371-1377. |
[9] | Aytekin Hitit, Merve Ge, gin, Pelin , ztü, rk. Effect of Annealing on Microstructure and Microhardness of Co-Fe-Ni-Ta-B-Si Bulk Metallic Glass [J]. J. Mater. Sci. Technol., 2015, 31(2): 148-152. |
[10] | Alexandr M. Glezer, Nadezhda A. Shurygina, Elena N. Blinova, Inga E. Permyakova, Sergey A. Firstov. Approach to the Theoretical Strength of Ti-Ni-Cu Alloy Nanocrystals by Grain Boundary Design [J]. J. Mater. Sci. Technol., 2015, 31(1): 91-96. |
[11] | Zhengkai Chang, Jun Gong, Chao Sun. Co-based Amorphous/Nanocrystalline Composite Coatings Deposited by Arc Ion Plating [J]. J. Mater. Sci. Technol., 2013, 29(9): 806-812. |
[12] | Jing Han, Hongtao Chen, Mingyu Li, Chunqing Wang. Shear Deformation Behaviors of Sn3.5Ag Lead-free Solder Samples [J]. J. Mater. Sci. Technol., 2013, 29(5): 471-479. |
[13] | Yaocheng Zhang, Zhuguo Li1, Pulin Nie, Yixiong Wu. Effect of Precipitation on the Microhardness Distribution of Diode Laser Epitaxially Deposited IN718 Alloy Coating [J]. J. Mater. Sci. Technol., 2013, 29(4): 349-352. |
[14] | Tong Gao, Xiangfa Liu. Replacement with Each Other of Ti and Zr in the Intermetallics of Al-(Si-) Ti-Zr Alloys [J]. J. Mater. Sci. Technol., 2013, 29(3): 291-296. |
[15] | Socorro Valdez, M. Suarez, O.A. Fregoso, J.A. Juarez-Islas. Microhardness, Microstructure and Electrochemical Efficiency of an Al (Zn/xMg) Alloy after Thermal Treatment [J]. J Mater Sci Technol, 2012, 28(3): 255-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||