J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (12): 1494-1503.DOI: 10.1016/j.jmst.2017.05.006
• Orginal Article • Previous Articles Next Articles
He Binbinab, Xu Weic*(), Huang Mingxinab**(
)
Received:
2016-11-25
Revised:
2017-02-04
Accepted:
2017-02-13
Online:
2017-12-20
Published:
2018-01-30
Contact:
Xu Wei,Huang Mingxin
He Binbin, Xu Wei, Huang Mingxin. Effect of boron on bainitic transformation kinetics after ausforming in low carbon steels[J]. J. Mater. Sci. Technol., 2017, 33(12): 1494-1503.
Steel | C | Mn | Cr | Ti | B | V | Mo | P | Si | Al | Nb | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Base | 0.2 | 1.6 | 2 | 0.001 | 0.0002 | 0.002 | 0.0015 | 0.0012 | 0.0038 | 0.013 | 0.0034 | Bal. |
B steel | 0.2 | 1.6 | 2 | 0.023 | 0.0041 | 0.002 | 0.0017 | 0.0012 | 0.0041 | 0.005 | 0.0029 | Bal. |
Table 1 Chemical compositions of investigated steels (wt%).
Steel | C | Mn | Cr | Ti | B | V | Mo | P | Si | Al | Nb | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Base | 0.2 | 1.6 | 2 | 0.001 | 0.0002 | 0.002 | 0.0015 | 0.0012 | 0.0038 | 0.013 | 0.0034 | Bal. |
B steel | 0.2 | 1.6 | 2 | 0.023 | 0.0041 | 0.002 | 0.0017 | 0.0012 | 0.0041 | 0.005 | 0.0029 | Bal. |
Steel | Ac1 (°C) | Ac3 (°C) | Ms (°C) | Grain size (μm) |
---|---|---|---|---|
Base | 762 | 795 | 391 | 12 ± 2 |
B steel | 765 | 805 | 367 | 11 ± 3 |
Table 2 Ac1Ac3, Ms and prior austenite grain size of the investigated steels.
Steel | Ac1 (°C) | Ac3 (°C) | Ms (°C) | Grain size (μm) |
---|---|---|---|---|
Base | 762 | 795 | 391 | 12 ± 2 |
B steel | 765 | 805 | 367 | 11 ± 3 |
Fig. 1. (a) TTT diagram of Base steel and B steel. The incubation time was based on the 5% transformed volume fraction. The best deformation temperature for both two steels is 550 °C; (b) a schematic illustration of temperature program employed in the present study. Red line represents the deformation at 550 °C. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Dilatational curves of bainitic transformation at 450 °C after different amounts of plastic deformation at 550 °C for (a) Base steel and (b) B steel; (c) engineering stress-strain curves for Base steel and B steel.
Fig. 3. Bainitic transformation kinetics at 450 °C after different amounts of deformation based on the aspects of (a) incubation time, (b) transformation velocity and (c) transformed volume fraction for Base steel and B steel.
Fig. 4. SEM images of transformed products after different amounts of deformation for Base steel: (a) 0%; (b) 2%; (c) 10%; (d) 25%; (e) magnified view of dashed rectangle region in (c); (f) magnified view of dashed rectangle region in (d) (B: bainite; M/A: martensite/austenite; white arrows in (b) mark the bainitic sheaf structure; white arrows in (e) and (f) mark the small bainite which is surrounded by M/A islands).
Fig. 5. SEM images of transformed products after different amounts of deformation for B steel: (a) 0%; (b) 2%; (c) 10%; (d) 25%; (e) magnified view of dashed rectangle region in (c); (f) magnified view of dashed rectangle region in (d) (White arrows in (d) and (f) mark the small bainites which are surrounded by M/A islands).
Fig. 6. Volume fraction of bainite obtained from SEM images. The errors bar represents the standard deviation from calculation using different SEM images.
Fig. 7. EBSD all Euler orientation maps of transformed product with deformation amounts of 0% (a, c) and 25% (b, d) for Base steel (a, b) and B steel (c, d) (Black lines represent high angle boundaries (? > 15°)).
Fig. 8. TEM bright field images of transformed product of Base steel after deformation of 2%: (a) formation of bainite and martensite in prior austenite grain. White dashed lines mark the PAGB; (b) magnified view of red dashed rectangle in (a), showing granular morphology of bainite with distribution of cementite precipitation; (c) magnified view of white solid rectangle in (a), showing lath morphology of martensite. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. TEM micrographs of dislocations in bainite of B steel after different amounts of deformation: (a) 2%; (b) 10%; (c)-(f) 25%; (d) magnified view of dashed rectangle in (c); (e) weak beam condition of the same interested area; (f) bright field image of dislocation at the prior austenite grain interior. Note that the scales are different. White dashed lines mark the prior austenite grain boundaries.
Fig. 10. TEM micrographs of precipitations in bainite of B steel after deformation of 2% (a) and 25% (b)-(d). (a, b) Precipitations at the prior austenite grain boundary (PAGB); (c) precipitation at the prior austenite grain interior; (d) magnified view of dashed rectangle in (c), the white dashed lines mark the PAGB; (e) EDX spectrum of precipitation in (d).
|
[1] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[2] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[3] | Ji Zou, Guo-Jun Zhang, Zheng-Yi Fu. In-situ ZrB2- hBN ceramics with high strength and low elasticity [J]. J. Mater. Sci. Technol., 2020, 48(0): 186-193. |
[4] | Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38(0): 39-46. |
[5] | Kaili Yao, Xiaojun Tan, Bing Dai, Jie Bai, Qiaoyang Sun, Wenxin Cao, Jiwen Zhao, Lei Yang, Jiecai Han, Jiaqi Zhu. Au nanospheres modified boron-doped diamond microelectrode grown via hydrogen plasma etching solid doping source for dopamine detection [J]. J. Mater. Sci. Technol., 2020, 49(0): 42-46. |
[6] | Ji Zou, Hai-Bin Ma, Jing-Jing Liu, Wei-Min Wang, Guo-Jun Zhang, Zheng-Yi Fu. Nanoceramic composites with duplex microstructure break the strength-toughness tradeoff [J]. J. Mater. Sci. Technol., 2020, 58(0): 1-9. |
[7] | Guang Yang, Shang-Yi Ma, Kui Du, Dong-Sheng Xu, Sen Chen, Yang Qi, Heng-Qiang Ye. Interactions between dislocations and twins in deformed titanium aluminide crystals [J]. J. Mater. Sci. Technol., 2019, 35(3): 402-408. |
[8] | Junfeng Gu, Ji Zou, Peiyan Ma, Hao Wang, Jinyong Zhang, Weimin Wang, Zhengyi Fu. Reactive sintering of B4C-TaB2 ceramics via carbide boronizing: Reaction process, microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2019, 35(12): 2840-2850. |
[9] | , Yongsheng Liu, Mingxi Zhao, Fang Ye, Laifei Cheng. Effect of heat treatment temperature on microstructure and electromagnetic shielding properties of graphene/SiBCN composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2897-2905. |
[10] | J.?í?ek. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review [J]. J. Mater. Sci. Technol., 2018, 34(4): 577-598. |
[11] | Blum W., Eisenlohr P.. Deformation Strength of Nanocrystalline Thin Films [J]. J. Mater. Sci. Technol., 2017, 33(7): 718-722. |
[12] | Zhang Wei, Du Xiaoli, Tan Yueyue, Hu Jinbo, Li Zhen, Tang Bohejin. Amorphous Cobalt Boron Alloy@Graphene Oxide Nanocomposites for Pseudocapacitor Applications [J]. J. Mater. Sci. Technol., 2017, 33(5): 438-443. |
[13] | S. Tang, L.K. Ning, T.Z. Xin, Z. Zheng. Coarsening Behavior of Gamma Prime Precipitates in a Nickel Based Single Crystal Superalloy [J]. J. Mater. Sci. Technol., 2016, 32(2): 172-176. |
[14] | Xiang-Fen Jiang, Qunhong Weng, Xue-Bin Wang, Xia Li, Jun Zhang, Dmitri Golberg, Yoshio Bando. Recent Progress on Fabrications and Applications of Boron Nitride Nanomaterials: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 589-598. |
[15] | Wenlin Mo, Xiaobing Hu, Shanping Lu, Dianzhong Li, Yiyi Li. Effects of Boron on the Microstructure, Ductility-dip-cracking, and Tensile Properties for NiCrFe-7 Weld Metal [J]. J. Mater. Sci. Technol., 2015, 31(12): 1258-1267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||