J. Mater. Sci. Technol. ›› 2015, Vol. 31 ›› Issue (3): 235-242.DOI: .10.1016/j.jmst.2014.12.001
• Orginal Article • Next Articles
Xiaosheng Zhou1, Chenxi Liu1, Liming Yu1, Yongchang Liu1, *, Huijun Li2
Received:
2014-10-13
Online:
2015-03-20
Published:
2015-07-23
Contact:
Corresponding author. Prof., Ph.D.; Tel./Fax: +86 22 87401873. E-mail address: Supported by:
Xiaosheng Zhou, Chenxi Liu, Liming Yu, Yongchang Liu, Huijun Li. Phase Transformation Behavior and Microstructural Control of High-Cr Martensitic/Ferritic Heat-resistant Steels for Power and Nuclear Plants: A Review[J]. J. Mater. Sci. Technol., 2015, 31(3): 235-242.
Schematical diagram illustrating the nucleation, growth, and impingement correction modes when a modular analytical phase transformation was developed
Schematic diagram of the relationship between the stored energy in rolled alloy and the final microstructure of alloy preannealed and then recrystallized[40].
[1] R.L. Klueh, D.R. Harries, American Society for Testing and Materials, WestConshohocken, PA, 2001. [2] F. Abe, Sci. Technol. Adv. Mater. 9 (2008) 013002. [3] R.L. Klueh, Int. Mater. Rev. 50 (2005) 287-310. [4] R.L. Klueh, D.S. Gelles, S. Jitsukawa, A. Kimura, G.R. Odette, B. van der Schaaf,M. Victoria, J. Nucl. Mater. 307e311 (2002) 455-465. [5] R.L. Klueh, A.T. Nelson, J. Nucl. Mater. 371 (2007) 37-52. [6] S.N. Rosenwasser, P. Miller, J.A. Dalessandro, J.M. Rawls, W.E. Toffolo, W. Chen,J. Nucl. Mater. 85e86 (1979) 177-182. [7] R.W. Conn, E.E. Bloom, J.W. Davis, R.E. Gold, R. Little, K.R. Schultz, D.L. Smith,F.W. Wiffen, Nucl. Technol./Fusion 5 (1984) 291-310. [8] E. Lucon, Fusion Eng. Des. 61e62 (2002) 683-689. [9] N. Baluc, D.S. Gelles, S. Jitsukawa, A. Kimura, R.L. Klueh, G.R. Odette, B. van derSchaaf, J.N. Yu, J. Nucl. Mater. 367e370 (2007) 33-41. [10] Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R.J. Kurtz,R. Lindau, T. Muroga, G.R. Odette, B. Raj, R.E. Stoller, L. Tan, H. Tanigawa, A.-A.F. Tavassoli, T. Yamamoto, F. Wan, Y. Wu, J. Nucl. Mater. 442 (2013) S2-S8. [11] J.N. Yu, Q.Y. Huang, F.R. Wan, J. Nucl. Mater. 367e370 (2007) 97-101. [12] L. Cipolla, H.K. Danielsen, D. Venditti, P.E. Di Nunzio, J. Hald, M.A.J. Somers,Acta Mater. 58 (2010) 669-679. [13] R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, J. Nucl. Mater. 341 (2005) 103-114. [14] L. Zhao, H.Y. Jing, J.J. Xiu, Y.D. Han, L.Y. Xu, Mater. Des. 57 (2014) 736-743. [15] H. Sakasegawa, T. Hirose, A. Kohyama, Y. Katoh, T. Harada, K. Asakura, Fusion Eng. Des. 61e62 (2002) 671-675. [16] L. Tan, T.S. Byun, Y. Katoh, L.L. Snead, Acta Mater. 71 (2014) 11-19. [17] X. Hu, L.X. Huang, W. Yan, W. Wang, W. Sha, Y.Y. Shan, K. Yang, Mater. Sci.Eng. A 586 (2013) 253-258. [18] A.T.W. Kempen, F. Sommer, E.J. Mittemeijer, Acta Mater. 50 (2002) 3545-3555. [19] A.T.W. Kempen, F. Sommer, E.J. Mittemeijer, J. Mater. Sci. 37 (2002) 1321-1332. [20] F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Int. Mater. Rev. 52 (2007) 193-212. [21] Y.C. Liu, F. Sommer, E.J. Mittemeijer, Acta Mater. 52 (2004) 2549-2560. [22] D.J. Wang, Y.C. Liu, Y.H. Zhang, J. Mater. Sci. 43 (2008) 4876-4885. [23] Y.C. Liu, D.J. Wang, F. Sommer, E.J. Mittemeijer, Acta Mater. 56 (2008) 3833-3842. [24] F. Liu, F. Sommer, E.J. Mittemeijer, Acta Mater. 52 (2004) 3207-3216. [25] F. Liu, H. Nitsche, F. Sommer, E.J. Mittemeijer, Acta Mater. 58 (2010) 6542-6553. [26] D.J. Wang, Y.C. Liu, Z.M. Gao, Y.H. Zhang, J. Non-Cryst. Solids 354 (2008) 3990-3999. [27] Z. Nishiyama, Martensitic Transformation, Academic Press, New York, 1978. [28] D.P. Koistinen, R.E. Marburger, Acta Metall. 7 (1959) 59-60. [29] S.M.C. van Bohemen, J. Sietsma, Mater. Sci. Technol. 25 (2009) 1009-1012. [30] Y.C. Liu, L.F. Zhang, F. Sommer, E.J. Mittemeijer, Metall. Mater. Trans. A 44 (2013) 1430-1440. [31] L.F. Zhang, Solid-state Phase Transformation and Kinetics Simulation in Continuously-cooled High Cr Fe-based Alloys, Ph.D. Thesis, Tianjin University, 2011 (in Chinese). [32] D.H. Shin, K.T. Park, Mater. Sci. Eng. A 410e411 (2005) 299-302. [33] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng. A 137 (1991) 35-40. [34] Y.T. Zhu, T.C. Lowe, Mater. Sci. Eng. A 291 (2000) 46-53. [35] D.C. Foley, K.T. Hartwig, S.A. Maloy, P. Hosemann, X. Zhang, J. Nucl. Mater. 389 (2009) 221-224. [36] Z.Q. Fan, T. Hao, S.X. Zhao, G.N. Luo, C.S. Liu, Q.F. Fang, J. Nucl. Mater. 434 (2013) 417-421. [37] A. Kostka, K.G. Tak, G. Eggeler, Mater. Sci. Eng. A 481e482 (2008) 723-726. [38] M. Song, Y.D. Wu, D. Chen, X.M. Wang, C. Sun, K.Y. Yu, Y. Chen, L. Shao, Y. Yang, K.T. Hartwig, X. Zhang, Acta Mater. 74 (2014) 285-295. [39] P. He, T. Liu, A. M€oslang, R. Lindau, R. Ziegler, J. Hoffmann, P. Kurinskiy, L. Commin, P. Vladimirov, S. Nikitenko, M. Silveir, Mater. Chem. Phys. 136 (2012) 990-998. [40] T.S. Chou, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 9 (1993) 890-897. [41] G.I. Rees, P.H. Shipway, Mater. Sci. Eng. A 223 (1997) 168-178. [42] G.W. Greenwood, R.H. Johnson, Proc. R. Soc. Lond. A 283 (1965) 403-422. [43] Y.C. Liu, F. Sommer, E.J. Mittemeijer, Acta Mater. 57 (2009) 2858-2868. [44] Y.C. Liu, F. Sommer, E.J. Mittemeijer, Acta Mater. 58 (2010) 753-763. [45] C.X. Liu, Y.C. Liu, D.T. Zhang, Z.Z. Dong, B.Q. Ning, Z.S. Yan, Adv. Mater. Res. 299e300 (2011) 61-64. [46] L.Q. Xu, Z.S. Yan, Y.C. Liu, H.J. Li, B.Q. Ning, Z.X. Qiao, J. Mater. Res. 28 (2013) 2835-2843. [47] D.P. Zhao, Y. Liu, F. Liu, Y.R. Wen, L.J. Zhang, Y.H. Dou, Mater. Lett. 65 (2011) 1672-1674. [48] M.L. Santella, R.W. Swindeman, R.W. Reed, J.M. Tanzosh, http://web.ornl.gov/~webworks/cppr/y2001/pres/113751.pdf. [49] M. Tamura, T. Kumagai, N. Miura, Y. Kondo, K. Shinozuka, H. Esaka, Mater.Trans. 52 (2011) 691-698. [50] B.Q. Ning, X.S. Zhou, Q.Z. Shi, Y.C. Liu, J. Zhao, Z.P. Zhang, Int. J. Mater. Res. 105(2014) 232-239. [51] X.S. Zhou, Y.C. Liu, C.X. Liu, B.Q. Ning, Mater. Sci. Eng. A 608 (2014) 46-52. [52] H.K.D.H. Bhadeshia, ISIJ Int. 41 (2001) 626-640. [53] M. Taneike, F. Abe, K. Sawada, Nature 424 (2003) 294-296. [54] F. Abe, M. Taneike, K. Sawada, Int. J. Press. Vessels Pip 84 (2007) 3-12. [55] R.L. Klueh, N. Hashimoto, P.J. Maziasz, J. Nucl. Mater. 367e370 (2007) 48-53. [56] L.Q. Chen, Z.Y. Zeng, Y. Zhao, F.X. Zhu, X.H. Liu, Metall. Mater. Trans. A 45(2014) 1498-1507. [57] Z.X. Xia, C. Zhang, Z.G. Yang, Mater. Sci. Eng. A 528 (2011) 6764-6768. [58] L. Dai, Y.C. Liu, Z.Z. Dong, Powder Technol. 217 (2012) 281-287. [59] L. Dai, Y.C. Liu, Z.Q. Ma, Z.Z. Dong, L.M. Yu, J. Mater. Sci. 48 (2013) 1826-1836. [60] L. Dai, Y.C. Liu, Z.Z. Dong, L.M. Yu, Sci. Adv. Mater. 4 (2012) 851-858. [61] H. Sakasegawa, L. Chaffron, F. Legendre, L. Boulanger, T. Cozzika, M. Brocq,Y. de Carlan, J. Nucl. Mater. 384 (2009) 115-118. [62] S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, H. Nakashima, J. Nucl.Sci. Tech. 39 (2002) 872-879. [63] M.K. Miller, D.T. Hoelzer, E.A. Kenik, K.F. Russell, Intermetallics 13 (2005) 387-392. [64] G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, E. Ma, Nature 12 (2013). 344-350. |
[1] | Shuo Wang, Chi Zhang, Xin Li, Houbing Huang, Junsheng Wang. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58(0): 205-214. |
[2] | Haiwen Luo, Xiaohui Wang, Zhenbao Liu, Zhiyong Yang. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51(0): 130-136. |
[3] | Xiaoxiao Wei, Li Jin, Fenghua Wang, Jing Li, Nan Ye, Zhenyan Zhang, Jie Dong. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates [J]. J. Mater. Sci. Technol., 2020, 44(0): 19-23. |
[4] | Tao Yuan, Xin Song, Xianglong Zhou, Wentao Jia, Munzali Musa, Jingdong Wang, Tianyu Ma. Role of primary Zr-rich particles on microstructure and magnetic properties of 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets [J]. J. Mater. Sci. Technol., 2020, 53(0): 73-81. |
[5] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. |
[6] | Qiang Lu, Kai Li, Haonan Chen, Mingjun Yang, Xinyue Lan, Tong Yang, Shuhong Liu, Min Song, Lingfei Cao, Yong Du. Simultaneously enhanced strength and ductility of 6xxx Al alloys via manipulating meso-scale and nano-scale structures guided with phase equilibrium [J]. J. Mater. Sci. Technol., 2020, 41(0): 139-148. |
[7] | Wenyin Xue, Jinhua Zhou, Yongfeng Shen, Weina Zhang, Zhenyu Liu. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1869-1876. |
[8] | J.P. Hou, R. Li, Q. Wang, H.Y. Yu, Z.J. Zhang, Q.Y. Chen, H. Ma, X.M. Wu, X.W. Li, Z.F. Zhang. Three principles for preparing Al wire with high strength and high electrical conductivity [J]. J. Mater. Sci. Technol., 2019, 35(5): 742-751. |
[9] | Jinfeng Li, Shuo Xiang, Hengwei Luan, Abdukadir Amar, Xue Liu, Siyuan Lu, Yangyang Zeng, Guomin Le, Xiaoying Wang, Fengsheng Qu, Chunli Jiang, Guannan Yang. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition [J]. J. Mater. Sci. Technol., 2019, 35(11): 2430-2434. |
[10] | Xinguang Wang, Guoming Han, Chuanyong Cui, Shuai Guan, Jinguo Li, Guichen Hou, Yizhou Zhou, Xiaofeng Sun. On the γ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 84-87. |
[11] | Y.L. Wang, H.C. Jiang, Z.M. Li, D.S. Yan, D. Zhang, L.J. Rong. Two-stage double peaks ageing and its effect on stress corrosion cracking susceptibility of Al-Zn-Mg alloy [J]. J. Mater. Sci. Technol., 2018, 34(7): 1250-1257. |
[12] | J.?í?ek. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review [J]. J. Mater. Sci. Technol., 2018, 34(4): 577-598. |
[13] | X.B. Yang, J.H. Chen, G.H. Zhang, L.P. Huang, T.W. Fan, Y. Ding, X.W. Yu. A transmission electron microscopy study of microscopic causes for localized-corrosion morphology variations in the AA7055 Al alloy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1719-1729. |
[14] | Zhang Li, Wang Qudong, Liao Wenjun, Guo Wei, Ye Bing, Jiang Haiyan, Ding Wenjiang. Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy [J]. J. Mater. Sci. Technol., 2017, 33(9): 935-940. |
[15] | Guan Renguo,Shen Yongfeng,Zhao Zhanyong,Wang Xiang. A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates [J]. J. Mater. Sci. Technol., 2017, 33(3): 215-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||