J. Mater. Sci. Technol. ›› 2024, Vol. 203: 180-200.DOI: 10.1016/j.jmst.2024.02.038
• Reserch Article • Previous Articles Next Articles
Shi Huanga,b, Kang Xianga, Jiawei Mia,c,*
Received:
2023-11-14
Revised:
2024-01-17
Accepted:
2024-02-07
Published:
2024-12-20
Online:
2024-12-16
Contact:
*E-mail address: Shi Huang, Kang Xiang, Jiawei Mi. Recent advances in synchrotron X-ray studies of the atomic structures of metal alloys in liquid state[J]. J. Mater. Sci. Technol., 2024, 203: 180-200.
[1] D.L. Goodstein, States of Matter, Dover Publications, Garden City, USA (2014). [2] J.A. Barker, D. Henderson, Rev. Mod. Phys., 48(1976), p. 587. [3] Y. He, J. Li, J. Wang, E. Beaugnon, Trans. Nonferrous Met. Soc. China, 30(2020), pp. 2293-2310. [4] L. Qin, W. Du, S. Cipiccia, A.J. Bodey, C. Rau, J. Mi, Acta Mater., 265 (2023), Article 119593. [5] B. Wang, D. Tan, T.L. Lee, J.C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, J. Mi, Acta Mater., 144(2018), pp. 505-515. [6] C.J. Smithells, Metals Reference Book, Elsevier, Amsterdam, Netherlands (2013). [7] J.M. Dmitry, G. Eskin, Solidification Processing of Metallic Alloys Under External Fields, Springer International Publishing, Cham, Switzerland (2018). [8] A. Mühlbauer, History of Induction Heating and Melting, Vulkan-Verlag GmbH, Essen, Germany (2008). [9] P.G. Debenedetti, Metastable liquids: Concepts and Principles, Princeton University Press, USA (1996). [10] I.G.e. Brodova, P.S. Popel, G.I. Eskin, Liquid Metal processing: Applications to Aluminium Alloy Production, CRC Press, Boca Raton, USA (2001). [11] A.R.J.P. Ubbelohde, Proc. R. Soc. London Ser.A-Math. Phys. Eng. Sci., 293(1966), pp. 291-309. [12] T. Ishikawa, P.F. Paradis, T. Itami, S. Yoda, Meas. Sci. Technol., 16(2005), p. 443. [13] J.R. Weber, S. Krishnan, P.C. Nordine, JOM, 43(1991), pp. 8-14. [14] I. Egry, D. Holland-Moritz, Levitation methods for structural and dynamical studies of liquids at high temperatures, Eur.Phys. J. Spec. Top., 196(2011), pp. 131-150. [15] D.L. Price, High-temperature Levitated Materials, Cambridge University Press, UK (2010). [16] E. Brandt, Science, 243(1989), pp. 349-355. [17] L. Hennet, V. Cristiglio, J. Kozaily, I. Pozdnyakova, H. Fischer, A. Bytchkov, J. Drewitt, M. Leydier, D. Thiaudière, S. Gruner, Eur. Phys. J. Spec. Top., 196(2011), pp. 151-165. [18] P.C. Nordine, R.M. Atkins, Rev. Sci. Instrum., 53(1982), pp. 1456-1464. [19] J.K. Weber, A. Tamalonis, C.J. Benmore, O.L. Alderman, S. Sendelbach, A. Hebden, M.A. Williamson, Rev. Sci. Instrum., 87 (2016), Article 073902. [20] J.K.R.Weber, C.J. Benmore, L.B. Skinner, J. Neuefeind, S.K. Tumber, G. Jennings, L.J. Santodonato, D. Jin, J. Du, J.B. Parise, J. Non-Cryst. Solids, 383(2014), pp. 49-51. [21] K. Beard, H. Pruppacher, J. Atmos. Sci., 26(1969), pp. 1066-1072. [22] C. Benmore, J. Weber, Adv. Phys.-X, 2(2017), pp. 717-736. [23] T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D.M. Herlach, Phys. Rev. Lett., 89 (2002), Article 075507. [24] E. Laithwaite, Proc. Instit. Electr. Eng., 112(1965), pp. 2361-2375. [25] G. Jacobs, I. Egry, Phys. Rev. B, 59(1999), p. 3961. [26] G. Jacobs, I. Egry, D. Holland-Moritz, D. Platzek, J. Non-Cryst.Solids, 232-234(1998), pp. 396-402. [27] K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson, Phys. Rev. Lett., 90 (2003), Article 195504. [28] G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, Phys. Rev. Lett., 93 (2004), Article 037802. [29] A.K. Gangopadhyay, G.W. Lee, K.F. Kelton, J.R. Rogers, A.I. Goldman, D.S. Robinson, T.J. Rathz, R.W. Hyers, Rev. Sci. Instrum., 76 (2005), Article 073901. [30] T. Kordel, D. Holland-Moritz, F. Yang, J. Peters, T. Unruh, T. Hansen, A. Meyer, Phys. Rev. B, 83 (2011), Article 104205. [31] N.A. Mauro, K.F. Kelton, Rev. Sci. Instrum., 82 (2011), Article 035114. [32] W.K. Rhim, S.K. Chung, D. Barber, K.F. Man, G. Gutt, A. Rulison, R.E. Spjut, Rev. Sci. Instrum., 64(1993), pp. 2961-2970. [33] C.J. Benmore, J.K.R. Weber, Phys. Rev. X, 1 (2011), Article 011004. [34] J. Leiterer, W. Leitenberger, F. Emmerling, A.F. Thünemann, U. Panne, J. Appl. Crystallogr., 39(2006), pp. 771-773. [35] W. Mirihanage, D. Browne, G. Zimmermann, L. Sturz, Acta Mater., 60(2012), pp. 6362-6371. [36] H. Nguyen-Thi, G. Reinhart, B. Billia, C.R. Mec., 345(2017), pp. 66-77. [37] L. Hennet, D.H. Moritz, R. Weber, A. Meyer, High-temperature Levitated materials, Experimental methods in the Physical Sciences, Elsevier, Amsterdam, Netherlands(2017), pp. 583-636. [38] S. Spitans, E. Baake, B. Nacke, A. Jakoviċs, Magnetohydrodynamics, 51(2015), pp. 121-132. [39] A. SALLES, Lasers, levitation and machine learning make better heat-resistant materials.https://www.anl.gov/article/lasers-levitation-and-machine-learning-make-better-heatresistant-materials. [40] E. Okress, D. Wroughton, G. Comenetz, P. Brace, J. Kelly, J. Appl. Phys., 23(1952), pp. 545-552. [41] H. Weis, D. Holland-Moritz, F. Kargl, F. Yang, T. Unruh, T. Hansen, J. Bednarčik, A. Meyer, Phys. Rev. B, 104 (2021), Article 134108. [42] S. Stüber, D. Holland-Moritz, T. Unruh, A. Meyer, Phys. Rev. B, 81 (2010), Article 024204. [43] S.M. Chathoth, A. Meyer, M. Koza, F. Juranyi, Appl. Phys. Lett., 85(2004), pp. 4881-4883. [44] P.F. Paradis, T. Ishikawa, G.W. Lee, D. Holland-Moritz, J. Brillo, W.K. Rhim, J.T. Okada, Mater. Sci. Eng. R-Rep., 76(2014), pp. 1-53. [45] C.E.P. Talbot, N.L. Church, E.M. Hildyard, L.D. Connor, J.R. Miller, N.G. Jones, Acta Mater., 262 (2024), Article 119409. [46] S. Kohara, M. Itou, K. Suzuya, Y. Inamura, Y. Sakurai, Y. Ohishi, M. Takata, J. Phys.-Condes. Matter, 19 (2007), Article 506101. [47] K. Bücks, H. Müller, Z. Phys., 84(1933), pp. 75-86. [48] H.W.S.Clair, Ind. Eng. Chem., 41(1949), pp. 2434-2438. [49] E. Trinh, Rev. Sci. Instrum., 56(1985), pp. 2059-2065. [50] J.J.-Z. Li, Study of Liquid Metals By Electrostatic Levitation, California Institute of Technology (2009), Ph.D. Thesis. [51] N. Mauro, J. Bendert, A. Vogt, J. Gewin, K. Kelton, J. Chem. Phys., 135 (2011), Article 044502. [52] H. Tostmann, E. DiMasi, P.S. Pershan, B.M. Ocko, O.G. Shpyrko, M. Deutsch, Phys. Rev. B, 59(1999), pp. 783-791. [53] E. Dimasi, H. Tostmann, Synchrot. Radiat. News, 12(1999), pp. 41-46. [54] S. Oh, Y. Kauffmann, C. Scheu, W. Kaplan, M. Ruhle, Science, 310(2005), pp. 661-663. [55] M. Gandman, Y. Kauffmann, C.T. Koch, W.D. Kaplan, Phys. Rev. Lett., 110 (2013), Article 086106. [56] L. Wang, W. Lu, Q. Hu, M. Xia, Y. Wang, J.G. Li, Acta Mater., 139(2017), pp. 75-85. [57] Z. Ding, Q. Hu, W. Lu, S. Sun, M. Xia, J. Li, Scr. Mater., 130(2017), pp. 214-218. [58] X. Li, F. Zu, J. Yu, B. Zhou, Phase Transit., 81(2008), pp. 43-50. [59] G. Lee, A. Gangopadhyay, T. Croat, T. Rathz, R. Hyers, J. Rogers, K. Kelton, Phys. Rev. B, 72 (2005), Article 174107. [60] D. Holland-Moritz, D. Herlach, K. Urban, Phys. Rev. Lett., 71(1993), p. 1196. [61] M. Leocmach, H. Tanaka, Nat. Commun., 3(2012), pp. 1-8. [62] E.R. Weeks, D. Weitz, Phys. Rev. Lett., 89 (2002), Article 095704. [63] J. Conrad, F.W. Starr, D. Weitz, J. Phys. Chem.B, 109(2005), pp. 21235-21240. [64] C. Patrick Royall, S.R. Williams, T. Ohtsuka, H. Tanaka, Nat. Mater., 7(2008), pp. 556-561. [65] S. Jeon, T. Heo, S.Y. Hwang, J. Ciston, K.C. Bustillo, B.W. Reed, J. Ham, S. Kang, S. Kim, J. Lim, Science, 371(2021), pp. 498-503. [66] T. Kawasaki, H. Tanaka, J. Phys.-Condes. Matter, 22 (2010), Article 232102. [67] A. Widmer-Cooper, P. Harrowell, Phys. Rev. Lett., 96 (2006), Article 185701. [68] C. Brito, M. Wyart, J. Chem. Phys., 131(2009), p. 149. [69] T. Speck, A. Malins, C.P. Royall, Phys. Rev. Lett., 109 (2012), Article 195703. [70] G.D. Leines, A. Michaelides, J. Rogal, Faraday Discuss, 235(2022), pp. 406-415. [71] J. Taffs, C.Patrick Royall, Nat. Commun., 7(2016), pp. 1-7. [72] Y. Cheng, E. Ma, Prog. Mater. Sci., 56(2011), pp. 379-473. [73] T. Kawasaki, H. Tanaka, Proc. Natl. Acad. Sci., 107(2010), pp. 14036-14041. [74] L. Wang, X. Bian, J. Liu, Phys. Lett. A, 326(2004), pp. 429-435. [75] X. Qiu, J. Li, J. Wang, T. Guo, H. Kou, E. Beaugnon, Mater. Chem. Phys., 170(2016), pp. 261-265. [76] F.Q. Zu, Z.G. Zhu, L.J. Guo, X.B. Qin, H. Yang, W.J. Shan, Phys. Rev. Lett., 89 (2002), Article 125505. [77] J. Hou, H. Guo, J. Sun, X. Tian, C. Zhan, X. Qin, X. Chen, Phys. Lett. A, 358(2006), pp. 171-175. [78] J. Wang, J. Li, R. Hu, H. Kou, E. Beaugnon, Mater. Lett., 145(2015), pp. 261-263. [79] X. Li, F. Zu, W. Gao, X. Cui, L. Wang, G. Ding, Appl. Surf. Sci., 258(2012), pp. 5677-5682. [80] S. Golde, T. Palberg, H.J. Schöpe, Nat. Phys., 12(2016), pp. 712-717. [81] A. Arav, Y. Natan, Transfus. Med. Hemother., 46(2019), pp. 182-187. [82] B.J. Luyet, M.P. Gehenio, Biodynamica, 3(1940), pp. 33-39. [83] B.J. Luyet, E.L. Hodapp, Proc. Soc. Exp. Biol. Med., 39(1938), pp. 433-434. [84] A.M. Kaushal, P. Gupta, A.K. Bansal, Crit. Rev. Ther. Drug Carr.Syst., 21(2004), pp. 133-193. [85] P. Debenedetti, Concepts and Principles, Princeton University Press, USA (1996). [86] A. Onuki, Phase Transition Dynamics, Cambridge University Press, UK (2002). [87] K. Binder, Rep. Prog. Phys., 50(1987), p. 783. [88] K.F. Kelton, A.L. Greer, Nucleation in Condensed matter: Applications in Materials and Biology, Elsevier, Amsterdam, Netherlands (2010). [89] A.S. Myerson, B.L. Trout, Science, 341(2013), pp. 855-856. [90] J. Russo, F. Romano, H. Tanaka, Phys. Rev. X, 8 (2018), Article 021040. [91] Q. Jiang, H. Shi, M. Zhao, Acta Mater., 47(1999), pp. 2109-2112. [92] D. Turnbull, J. Appl. Phys., 21(1950), pp. 1022-1028. [93] D.G. Fahrenheit, Philos. Trans. R. Soc. Lond., 33(1724), pp. 78-84. [94] F.C. Frank, Proc. R. Soc. London Ser.A-Math. Phys. Eng. Sci., 215(1952), pp. 43-46. [95] M. Rappaz, P. Jarry, G. Kurtuldu, J. Zollinger, Metall. Mater. Trans. A, 51(2020), pp. 2651-2664. [96] H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimäki, T. Lippmann, G. Reiter, Nature, 408(2000), pp. 839-841. [97] L. Song, X. Tian, Y. Yang, J. Qin, H. Li, X. Lin, Front. Chem., 8(2020), p. 607. [98] Q. Zhang, J. Wang, S. Tang, Y. Wang, J. Li, W. Zhou, Z. Wang, Phys. Chem. Chem. Phys., 21(2019), pp. 4122-4135. [99] G. Díaz Leines, R. Drautz, J. Rogal, J. Chem. Phys., 146 (2017), Article 154702. [100] G.D. Leines, J. Rogal, Phys. Rev. Lett., 128 (2022), Article 166001. [101] Y.C. Hu, H. Tanaka, Sci. Adv., 6 (2020), p. eabd2928. [102] Y. Hu, H. Tanaka, Nat. Commun., 13(2022), p. 4519. [103] D.W. Lynch, J. Synchrot. Radiat., 4(1997), pp. 334-343. [104] V. Cerantola, A.D. Rosa, Z. Konôpková, R. Torchio, E. Brambrink, A. Rack, U. Zastrau, S. Pascarelli, J. Phys.-Condes. Matter, 33 (2021), Article 274003. [105] A.L. Robinson, Synchrot. Radiat. News, 28(2015), pp. 4-9. [106] https://lightsources.org/lightsources-of-the-world/. [107] P. Raimondi, Synchrot. Radiat. News, 29(2016), pp. 8-15. [108] D. Chenevier, A. Joly, Synchrot. Radiat. News, 31(2018), pp. 32-35. [109] P. Raimondi, C. Benabderrahmane, P. Berkvens, J.C. Biasci, P. Borowiec, J.F. Bouteille, T. Brochard, N.B. Brookes, N. Carmignani, L.R. Carver, J.M. Chaize, J. Chavanne, S. Checchia, Y. Chushkin, F. Cianciosi, M. Di Michiel, R. Dimper, A. D'Elia, D.Einfeld, F. Ewald, L. Farvacque, L. Goirand, L. Hardy, J. Jacob, L. Jolly, M. Krisch, G. Le Bec, I. Leconte, S.M. Liuzzo, C. Maccarrone, T. Marchial, D. Martin, M. Mezouar, C. Nevo, T. Perron, E. Plouviez, H. Reichert, P. Renaud, J.L. Revol, B. Roche, K.B. Scheidt, V. Serriere, F. Sette, J. Susini, L. Torino, R. Versteegen, S. White, F. Zontone, Commun. Phys., 6(2023), p. 82. [110] R.E. Dinnebier, S.J. Billinge, Powder diffraction: theory and practice, Royal Society of Chemistry, London, USA (2008). [111] F. Frank, M. Tkadletz, C. Saringer, A. Stark, N. Schell, M. Deluca, C. Czettl, N. Schalk, Coatings, 11(2021), p. 264. [112] M.D. Raven, R.W. Fitzpatrick, P.G. Self, Geol. Soc., 492(2021), pp. 165-179. [113] M. Filez, E.A. Redekop, J. Dendooven, R.K. Ramachandran, E. Solano, U. Olsbye, B.M. Weckhuysen, V.V. Galvita, H. Poelman, C. Detavernier, Angew. Chem.-Int. Edit., 58(2019), pp. 13220-13230. [114] A.S. Masadeh, J. Exp. Nanosci., 11(2016), pp. 951-974. [115] K.S. Suslick, Encyclopedia of Physical Science and technology, Sonoluminescence and Sonochemistry, (3rd ed.) (2001), pp. 1-20. [116] C.J. Benmore, ISRN Mater. Sci. (2012), pp. 1-19, 2012. [117] D. Lahiri, S.M. Sharma, A.K. Verma, B. Vishwanadh, G. Dey, G. Schumacher, T. Scherb, H. Riesemeier, U. Reinholz, M. Radtke, J. Synchrot. Radiat., 21(2014), pp. 1296-1304. [118] J. Yano, V.K. Yachandra, Photosynth. Res., 102(2009), pp. 241-254. [119] T. Sato, R. Letrun, H.J. Kirkwood, J. Liu, P. Vagovič, G. Mills, Y. Kim, C.M.S.Takem, M. Planas, M. Emons, T. Jezynski, G. Palmer, M. Lederer, S. Schulz, J. Mueller, H. Schlarb, A. Silenzi, G. Giovanetti, A. Parenti, M. Bergemann, T. Michelat, J. Szuba, J. Grünert, H.N. Chapman, A.P. Mancuso, Optica, 7(2020), pp. 716-720. [120] H.N. Chapman, P. Fromme, A. Barty, T.A. White, R.A. Kirian, A. Aquila, [121] K. Xiang, S. Huang, H. Song, V. Bazhenov, V. Bellucci, S. Birnsteinova, arXiv preprint arXiv:2305.08538(2023). doi:10.48550/arXiv.2305.08538. [122] S. Serkez, G. Geloni, S. Tomin, G. Feng, E. Gryzlova, A. Grum-Grzhimailo, M. Meyer, J. Opt., 20 (2018), Article 024005. [123] W. Barletta, J. Bisognano, J. Corlett, P. Emma, Z. Huang, K.J. Kim, R. Lindberg, J. Murphy, G. Neil, D. Nguyen, Nucl. Instrum. Methods Phys.Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 618(2010), pp. 69-96. [124] P. Buseck, J. Cowley, L. Eyring, High-resolution Transmission Electron microscopy: and Associated Techniques, Oxford University Press, UK (1989). [125] A. Hirata, L. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A. Yavari, M. Chen, Science, 341(2013), pp. 376-379. [126] J. Miao, P. Ercius, S.J. Billinge, Science, 353 (2016), p. aaf2157. [127] A. Pryor Jr, Y. Yang, A. Rana, M. Gallagher-Jones, J. Zhou, Y.H. Lo, G. Melinte, W. Chiu, J.A. Rodriguez, J. Miao, Sci. Rep., 7(2017), p. 10409. [128] Y. Yuan, D.S. Kim, J. Zhou, D.J. Chang, F. Zhu, Y. Nagaoka, Y. Yang, M. Pham, S.J. Osher, O. Chen, Nat. Mater., 21(2022), pp. 95-102. [129] D. Kofalt, S. Nanao, T. Egami, K. Wong, S. Poon, Phys. Rev. Lett., 57(1986), p. 114. [130] D. Kofalt, I. Morrison, T. Egami, S. Preische, S. Poon, P. Steinhardt, Phys. Rev. B, 35(1987), p. 4489. [131] S. Nanao, W. Dmowski, T. Egami, J. Richardson Jr, J. Jorgensen, Phys. Rev. B, 35(1987), p. 435. [132] S.J. Billinge, Pair Distribution Function technique: Principles and methods, Uniting Electron Crystallography and Powder Diffraction, Springer(2012), pp. 183-193. [133] A.K. Soper, E.R. Barney, J. Appl. Crystallogr., 44(2011), pp. 714-726. [134] T. Egami, S.J. Billinge, Underneath the Bragg peaks: Structural Analysis of Complex Materials, Elsevier, Amsterdam, Netherlands (2003). [135] Y. Liao, Practical Electron Microscopy and Database, An Online Book (2006), https://www.globalsino.com/EM/page3097.html. [136] A. Sokolov, A. Kisliuk, M. Soltwisch, D. Quitmann, Phys. Rev. Lett., 69(1992), p. 1540. [137] S. Pan, J. Qin, W. Wang, T. Gu, Phys. Rev. B, 84 (2011), Article 092201. [138] H. Lou, X. Wang, Q. Cao, D. Zhang, J. Zhang, T. Hu, H.K. Mao, J.Z. Jiang, Proc. Natl. Acad. Sci. U. S. A., 110(2013), pp. 10068-10072. [139] M.J. Cliffe, M.T. Dove, D. Drabold, A.L. Goodwin, Phys. Rev. Lett., 104 (2010), Article 125501. [140] Q. Zhang, J. Li, S. Tang, Z. Wang, J. Wang, J. Phys. Chem.C, 125(2021), pp. 3480-3494. [141] R. McGreevy, L. Pusztai, Mol. Simul., 1(1988), pp. 359-367. [142] A. Soper, Chem. Phys., 202(1996), pp. 295-306. [143] R.L.McGreevy, J. Phys.-Condes. Matter, 13(2001), p. R877. [144] D.T. Bowron, S.Diaz Moreno, Coord. Chem. Rev.,277-278(2014), pp. 2-14. [145] A. Soper, Phys. Rev. B, 72 (2005), Article 104204. [146] W.Y. Wang, J.J. Han, H.Z. Fang, J. Wang, Y.F. Liang, S.L. Shang, Y. Wang, X.J. Liu, L.J. Kecskes, S.N. Mathaudhu, X. Hui, Z.K. Liu, Acta Mater, 97(2015), pp. 75-85. [147] R. Freitas, E.J. Reed, Nat. Commun., 11(2020), p. 3260. [148] K. Hoshino, J. Phys.-Condes. Matter, 21 (2009), Article 474212. [149] G. Wang, Y. Xiao, C. Zhao, J. Li, D. Shang, Metall. Mater. Trans. B, 49(2018), pp. 282-290. [150] P. Ganesh, M. Widom, Phys. Rev. B, 77 (2008), Article 014205. [151] H. Sheng, W. Luo, F. Alamgir, J. Bai, E. Ma, Nature, 439(2006), pp. 419-425. [152] Y. Cheng, E. Ma, H. Sheng, Phys. Rev. Lett., 102 (2009), Article 245501. [153] M. Blodgett, K. Kelton, J. Non-Cryst.Solids, 412(2015), pp. 66-71. [154] W. Xu, M.T. Sandor, Y. Yu, H.B. Ke, H.P. Zhang, M.Z. Li, W.H. Wang, L. Liu, Y. Wu, Nat. Commun., 6(2015), p. 7696. [155] H. Tanaka, H. Tong, R. Shi, J. Russo, Nat. Rev. Phys., 1(2019), pp. 333-348. [156] C. Shi, O.L. Alderman, D. Berman, J. Du, J. Neuefeind, A. Tamalonis, J.R. Weber, J. You, C.J. Benmore, Front. Mater., 6(2019), p. 38. [157] L.B. Skinner, A.C. Barnes, P.S. Salmon, L. Hennet, H.E. Fischer, C.J. Benmore, S. Kohara, J.R. Weber, A. Bytchkov, M.C. Wilding, Phys. Rev. B, 87 (2013), Article 024201. [158] T. Proffen, R. Neder, J. Appl. Crystallogr., 32(1999), pp. 838-839. [159] P. Juhás, L. Granlund, P. Duxbury, W. Punch, S. Billinge, Acta Crystallogr. Sect. A, 64(2008), pp. 631-640. [160] P. Juhás, D. Cherba, P. Duxbury, W. Punch, S. Billinge, Nature, 440(2006), pp. 655-658. [161] F.M. Michel, L. Ehm, S.M. Antao, P.L. Lee, P.J. Chupas, G. Liu, D.R. Strongin, M.A. Schoonen, B.L. Phillips, J.B. Parise, Science, 316(2007), pp. 1726-1729. [162] A. Di Cicco, A. Trapananti, S. Faggioni, A. Filipponi, Phys. Rev. Lett., 91 (2003), Article 135505. [163] L. Xiong, X. Wang, Q. Yu, H. Zhang, F. Zhang, Y. Sun, Q. Cao, H. Xie, T. Xiao, D. Zhang, Acta Mater., 128(2017), pp. 304-312. [164] N.A. Mauro, V. Wessels, J.C. Bendert, S. Klein, A.K. Gangopadhyay, M.J. Kramer, S.G. Hao, G.E. Rustan, A. Kreyssig, A.I. Goldman, K.F. Kelton, Phys. Rev. B, 83 (2011), Article 184109. [165] M. Li, Y. Zhang, C. Wu, H. Geng, Appl. Phys. A, 122(2016), pp. 1-5. [166] X. Li, F. Zu, J. Yu, B. Zhou, Phase Transit., 81(2008), pp. 43-50. [167] S. Huang, S. Luo, L. Qin, D. Shu, B. Sun, A.J.G. Lunt, A.M. Korsunsky, J. Mi, Scr. Mater., 211 (2022), Article 114484. [168] Y. Zhao, S. Cao, L. Zeng, M. Xia, N. Jakse, J. Li, Metall. Mater. Trans. A, 54(2022), pp. 646-657. [169] S. Cao, W. Lu, Q. Hu, P. Yu, X. Ge, P. Lai, J. Li, Scr. Mater., 209 (2022), Article 114365. [170] S. Cao, L. Zeng, M. Xia, P. Yu, W. Lu, J. Li, J. Mol. Liq., 357 (2022), Article 119143. [171] S. Cao, L. Zeng, M. Xia, N. Jakse, P. Yu, W. Lu, J. Li, Metall. Mater. Trans. A, 53(2022), pp. 3274-3284. [172] P. Srirangam, M.J. Kramer, S. Shankar, Acta Mater., 59(2011), pp. 503-513. [173] S. Huang, Synchrotron X-ray Operando Studies of Atomic Structure Evolution of Multi-Component Al alloys in Liquid State, University of Hull (2023), Ph.D. Thesis. |
[1] | Guanqiang Wang, Mingsong Chen, Yongcheng Lin, Hongbin Li, Yuqiang Jiang, Yanyong Ma, Chengxu Peng, Jinliang Cai, Quan Chen. Recrystallization nucleation under close-set δ phase in a nickel-based superalloy during annealing [J]. J. Mater. Sci. Technol., 2022, 115(0): 166-176. |
[2] | M. Cheng,S.H. Zhang. Investigation of Micro Formability of Bulk Amorphous Alloy in the Supercooled Liquid State Based on Fluid Flow and Finite Element Analysis [J]. J Mater Sci Technol, 2009, 25(02): 277-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||