J. Mater. Sci. Technol. ›› 2024, Vol. 186: 91-103.DOI: 10.1016/j.jmst.2023.10.055
Special Issue: High-temperature alloys 2024; Ni-based alloys 2024
• Research Article • Previous Articles Next Articles
Pengfei Qu, Wenchao Yang*, Chen Liu, Jiarun Qin, Qiang Wang, Jun Zhang, Lin Liu
Received:
2023-08-13
Revised:
2023-10-06
Accepted:
2023-10-16
Published:
2024-07-01
Online:
2024-01-03
Contact:
*E-mail address: wenchaoyang@nwpu.edu.cn (W. Yang).
Pengfei Qu, Wenchao Yang, Chen Liu, Jiarun Qin, Qiang Wang, Jun Zhang, Lin Liu. Creep anisotropy dominated by orientation rotation in Ni-based single crystal superalloys at 750 °C/750 MPa[J]. J. Mater. Sci. Technol., 2024, 186: 91-103.
[1] R.C. Reed, The Superalloys Fundamentals and Applications, Cambridge Univer-sity Press, Cambridge, 2006. [2] T.M. Pollock, S. Tin, J. Propul. Power 22 (2006) 361-374. [3] Y. Tan, C. Zang, B. Zhou, X. Wang, E.P. Petrov, Chin. J. Aeronaut. 31 (2018) 410-418. [4] H. Zhou, X. Zhang, P. Wang, S. Lu, Int. J. Plast. 119 (2019) 249-272. [5] W. Song, X. Wang, J. Li, J. Meng, Y. Yang, J. Liu, J. Liu, Y. Zhou, X. Sun, J. Mater. Sci.Technol. 89 (2021) 16-23. [6] H. Yu, W. Xu, S. van der Zwaag, J.Mater. Sci. Technol. 45 (2020) 207-214. [7] K. Kakehi, Scr. Mater. 42 (2000) 197-202. [8] N.K. Arakere, G. Swanson, J. Eng. Gas.Turb. Power. 124 (2002) 161-176. [9] G. Swanson, N. Arakere, Effect of Crystal Orientation on Analysis of Sin-gle-Crystal, Nickel-Based Turbine Blade Superalloys, NASA (2000). [10] L. Witek, Eng. Fail. Anal. 13 (2006) 9-17. [11] M. Kamaraj, Sadhana 28 (2003) 115-128. [12] E. Sciubba, Energy 83 (2015) 104-114. [13] Y. Li, L. Wang, G. Zhang, J. Zhang, L. Lou, Mater. Sci. Eng. A 760 (2019) 26-36. [14] Y. Li, L. Wang, S. Zhao, G. Zhang, L. Lou, Mater. Sci. Eng. A 848 (2022) 143479. [15] P. Li, W. Yao, W. Jiang, Q. Han, J. Huang, Mater. Today Commun. 26 (2021) 101836. [16] C. Luo, H. Yuan, Int. J. Fatigue 168 (2023) 107438. [17] J. Yu, J.R. Li, S.Z. liu, M. Han, J.C. Xiong, Mater. Sci. Forum1072 (2022) 79-86. [18] Y.X. Liu, X.W. Lei, L.Y. Hao, S.X. Han, R.N. Yang, N. Wang, Appl. Surf. Sci. 576 (2022) 151785. [19] G.M. Han, J.J. Yu, Y.L. Sun, X.F. Sun, Z.Q. Hu, Mater. Sci. Eng. A 527 (2010) 5383-5390. [20] J. Yu, J.R. Li, S.Z. Liu, M. Han, in: Proceedings of the 14th International Sympo-sium on Superalloys (Superalloys 2020), 2020, pp. 303-311. [21] Y.M. Li, Z.H. Tan, X.G. Wang, Y. Mu, H.C. Zhao, H.B. Tan, J.L. Liu, B. Wang, J.G. Li, Y.Z. Zhou, X.F. Sun, Mater. Sci. Eng. A 856 (2022) 144006. [22] R.A. Mackay, R.D. Maier, R.L.Dreshfield, in: Proceedings of the fourth interna-tional symposium (Superalloys 1980) September 21-25, 1980, pp. 385-394. [23] R.A. MacKay, R.D. Maier, Metall. Trans. A 13 (1982) 1747-1754. [24] D.W.MacLachlan, G.S.K. Gunturi, D.M. Knowles, Comput. Mater. Sci. 25 (2002) 129-141. [25] V. Sass, U. Glatzel, M. Feller-Kniepmeier, Acta Mater. 44 (1996) 1967-1977. [26] Q.Z. Chen, D.M. Knowles, Mater. Sci. Eng. A 356 (2003) 352-367. [27] G. Han, J. Yu, X. Sun, Z. Hu, J. Mater. Sci.Technol. 28 (2012) 439-445. [28] L. Heep, D. Bürger, C. Bonnekoh, P. Wollgramm, A. Dlouhy, G. Eggeler, Scr. Mater. 207 (2022) 114274. [29] R.N. Ghosh, R.V. Curtis, M. McLean, Acta Metall. Mater. 38 (1990) 1977-1992. [30] P. Caron, Y. Ohta, Y.G. Nakagawa, T. Khan, in: Proceedings of the Sixth Interna-tional Symposium on Superalloys (Superalloys 1988) September 18-22, 1988, pp. 215-224. [31] P. Qu, W. Yang, C. Liu, J. Qin, H. Su, J. Zhang, L. Liu, Mater. Sci. Eng. A 869 (2023) 144823. [32] D. Shi, T. Sui, Z. Li, X. Yang, Chin. J. Aeronaut. 35 (2022) 238-249. [33] P. Qu, W. Yang, J. Qin, K. Cao, C. Liu, J. Zhang, L. Liu, Mater. Charact. 180 (2021) 111419. [34] G.L. Drew, R.C. Reed, K. Kakehi, C.M.F.Rae, in: Proceedings of the Tenth In-ternational Symposium on Superalloys (Superalloys 2004) September 19-23, 2004, pp. 127-136. [35] P. Qu, W. Yang, J. Qin, C. Liu, K. Cao, J. Zhang, L. Liu, Intermetallics 119 (2020) 106725. [36] W. Yang, S. Hu, M. Huo, D. Sun, J. Zhang, L. Liu, J. Mater. Res.Technol. 8 (2019) 1347-1352. [37] B.L. Adams, S.R. Kalidindi, D.T.Fullwood, in: B.L. Adams, S.R. Kalidindi, D.T. Fullwood (Eds.), Microstructure Sensitive Design for Performance Optimization, Butterworth-Heinemann, Boston, 2013. pp. 23-44. [38] R.A. Ricks, A.J. Porter, R.C. Ecob, Acta Metall. 31 (1983) 43-53. [39] Y. Su, S. Tian, H. Yu, D. Shu, S. Liang, Mater. Sci. Eng. A 668 (2016) 243-254. [40] P. Qu, W. Yang, J. Qin, C. Liu, X. Duan, J. Zhang, L. Liu, Intermetallics 162 (2023) 108017. [41] N. Matan, D.C. Cox, P. Carter, M.A. Rist, C.M.F.Rae, R.C. Reed, Acta Mater. 47 (1999) 1549-1563. [42] S.S.K.Gunturi, D.W. MacLachlan, D.M. Knowles, Mater. Sci. Eng. A 289 (2000) 289-298. [43] G. Straffelini, in: G. Straffelini (Ed.), Ductility and Formability of Metals, Aca-demic Press, 2023, pp. 159-183. [44] X.G. Wang, J. Li, J. Yu, S. Liu, Z.X. Shi, X. Yue, Acta Metall. Sin. 51 (2015) 1253-1260 (In Chinese). [45] E.F. Westbrooke, L.E. Forero, F. Ebrahimi, Acta Mater. 53 (2005) 2137-2147. [46] D. Qi, B. Fu, K. Du, T. Yao, C. Cui, J. Zhang, H. Ye, Scr Mater. 125 (2016) 24-28. [47] T.M. Smith, R.R. Unocic, H. Deutchman, M.J. Mills, Mater, High Temp. 33 (2016) 372-383. [48] M. Condat, B. Décamps, Scr. Metall. 21 (1987) 607-612. [49] B. Décamps, A.J. Morton, M. Condat, Philos. Mag. A 64 (1991) 641-668. [50] D.M. Knowles, S. Gunturi, Mater. Sci. Eng. A 328 (2002) 223-237. [51] L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, M.J. Mills, Prog. Mater Sci. 54 (2009) 839-873. [52] W.D. Callister, D.G. Rethwisch, Hoboken, 2021. [53] A. Nitz, U. Lagerpusch, E. Nembach, Acta Mater. 46 (1998) 4769-4779. [54] E. Schmid, W. Boas, London, 1968. [55] S. Ma, V. Seetharaman, B.S. Majumdar, Acta Mater. 56 (2008) 4102-4113. [56] R.R. Unocic, the Ohio State University, 2008. [57] P. Caron, T. Khan, P. Veyssière, Philos. Mag. A 57 (1988) 859-875. [58] H. Long, Y. Liu, D. Kong, H. Wei, Y. Chen, S. Mao, J. Alloy. Compd. 724 (2017) 287-295. [59] X. Wu, A. Dlouhy, Y.M. Eggeler, E. Spiecker, A. Kostka, C. Somsen, G. Eggeler, Acta Mater. 144 (2018) 642-655. [60] V. Sass, M. Feller-Kniepmeier, Mater. Sci. Eng. A 245 (1998) 19-28. [61] F.D.León-Cázares, R.Schlütter, F. Monni, M.C. Hardy, C.M.F. Rae, Acta Mater. 241 (2022) 118372. [62] N. Thompson, Proc. Phys. Soc.-Sect. B 66 (1953) 481-492. [63] W. Cai, V.V. Bulatov, J. Chang, J. Li, S. Yip, in: F.R.N. Nabarro, J.P. Hirth (Eds.), Dislocations in Solids, Elsevier, 2004. pp. 1-80. [64] A.M.Kosevich, in: F.R.N. Nabarro, M.S. Duesbery (Eds.), Dislocations in Solids, Elsevier, 1996. [65] D. Barba, E. Alabort, S. Pedrazzini, D.M. Collins, A.J. Wilkinson, P.A.J.Bagot, M.P. Moody, C. Atkinson, A.Jérusalem, R.C. Reed, Acta Mater. 135 (2017) 314-329. [66] D. Barba, S. Pedrazzini, A. Vilalta-Clemente, A.J. Wilkinson, M.P. Moody, P.A.J.Bagot, A. Jérusalem, R.C. Reed, Scr. Mater. 127 (2017) 37-40. [67] R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, M.J. Mills, Acta Mater. 59 (2011) 7325-7339. [68] T.M. Smith, Y. Rao, Y. Wang, M. Ghazisaeidi, M.J. Mills, Acta Mater. 141 (2017) 261-272. [69] X. Liu, J. Fan, K. Cao, F. Chen, R. Yuan, D. Liu, B. Tang, H. Kou, J. Li, J. Mater. Sci.Technol. 133 (2023) 58-76. [70] P. Pandey, M. Heczko, N. Khatavkar, N. Mazumder, A. Sharma, A. Singh, M.J. Mills, K. Chattopadhyay, Acta Mater. 252 (2023) 118928. [71] W.W. Xu, G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen, J. Mater. Sci.Technol. 90 (2021) 20-29. [72] P.M. Sarosi, G.B. Viswanathan, M.J. Mills, Scr. Mater. 55 (2006) 727-730. [73] G.B. Viswanathan, P.M. Sarosi, M.F. Henry, D.D. Whitis, W.W. Milligan, M.J. Mills, Acta Mater. 53 (2005) 3041-3057. [74] M. Kolbe, Mater. Sci. Eng.A 319-321 (2001) 383-387. [75] S. Hémery, P. Villechaise, Acta Mater. 171 (2019) 261-274. [76] J.M. Hestroffer, M.I. Latypov, J.C. Stinville, M.A. Charpagne, V. Valle, M.P. Miller, T.M. Pollock, I.J. Beyerlein, Acta Mater. 226 (2022) 117627. [77] C.C. Tasan, J.P.M.Hoefnagels, M. Diehl, D.Yan, F. Roters, D. Raabe, Int. J. Plast. 63 (2014) 198-210. |
[1] | S. Amir H. Motaman, Dilay Kibaroglu. The anisotropic grain size effect on the mechanical response of polycrystals: The role of columnar grain morphology in additively manufactured metals [J]. J. Mater. Sci. Technol., 2024, 181(0): 240-256. |
[2] | S.X. Wang, S.F. Li, X.M. Gan, R.D.K. Misra, R. Zheng, K. Kondoh, Y.F. Yang. Insights into the microstructural design of high-performance Ti alloys for laser powder bed fusion by tailoring columnar prior-β grains and α-Ti morphology [J]. J. Mater. Sci. Technol., 2024, 187(0): 156-168. |
[3] | Xun Shen, Baoru Sun, Shengwei Xin, Shuaijun Ding, Tongde Shen. Creep in a nanocrystalline VNbMoTaW refractory high-entropy alloy [J]. J. Mater. Sci. Technol., 2024, 187(0): 221-229. |
[4] | Xiuyang Zhong, Tongsheng Deng, Wenlong Xiao, Xiaochun Liu, Zhi Liu, Yucheng Yang, Olanrewaju A. Ojo. Improving thermal stability and creep resistance by Sc addition in near-α high-temperature titanium alloy [J]. J. Mater. Sci. Technol., 2024, 183(0): 1-11. |
[5] | Xingge Xu, Hualei Zhang, Xiangdong Ding, Jun Sun. Rapid design and screen high strength U-based high-entropy alloys from first-principles calculations [J]. J. Mater. Sci. Technol., 2024, 179(0): 174-186. |
[6] | Chang Zhou, Lihua Zhan, Chunhui Liu, Minghui Huang. Dislocation density-mediated creep ageing behavior of an Al-Cu-Li alloy [J]. J. Mater. Sci. Technol., 2024, 174(0): 204-217. |
[7] | H.X. Chen, L. Sheng, Z.L. Zhang, X.C. Wen, D.L. Yang, X.Y. Ye, P.Q. Dai. Discovery of new MAX-phase-like layered ternary carbide V8P6C: Crystal structure, thermal expansion, and elastic properties [J]. J. Mater. Sci. Technol., 2024, 174(0): 55-62. |
[8] | W.T. Lin, Q.Y. Lv, D. Jiao, L.B. Zhang, J. Tan, G. Sha, J. Hu. Creep-induced redistribution of alloying elements in CZ1 zirconium alloys [J]. J. Mater. Sci. Technol., 2024, 173(0): 31-44. |
[9] | Zhirou Zhang, Qinghuan Huo, Yuxiu Zhang, Byung-joo Kim, Hiromi Nagaumi, Xuyue Yang. Distinguished roles of static aging and strain aging in the microstructure and creep resistance of Mg-4Y-3.5Nd alloy [J]. J. Mater. Sci. Technol., 2024, 181(0): 20-40. |
[10] | Changlu Zhou, Ruihao Yuan, Baolong Su, Jiangkun Fan, Bin Tang, Pingxiang Zhang, Jinshan Li. Creep rupture life prediction of high-temperature titanium alloy using cross-material transfer learning [J]. J. Mater. Sci. Technol., 2024, 178(0): 39-47. |
[11] | Qiang Yang, Shuhui Lv, Bo Deng, Norbert Hort, Yuanding Huang, Wei Sun, Xin Qiu. Degraded creep resistance induced by static precipitation strengthening in high-pressure die casting Mg-Al-Sm alloy [J]. J. Mater. Sci. Technol., 2024, 178(0): 48-58. |
[12] | Bochuan Li, Kang Xu, Chao Jiang. Anisotropy reduction and mechanical property improvement of additively manufactured stainless steel based on cyclic phase transformation [J]. J. Mater. Sci. Technol., 2024, 184(0): 1-14. |
[13] | Feng Guo, Rizheng Han, Jishan Ying, Zeping Zhang, Rui Yang, Xing Zhang. Bioinspired polymeric heart valves derived from polyurethane and natural cellulose fibers [J]. J. Mater. Sci. Technol., 2023, 144(0): 178-187. |
[14] | Xudong Liu, Jiangkun Fan, Kai Cao, Fulong Chen, Ruihao Yuan, Degui Liu, Bin Tang, Hongchao Kou, Jinshan Li. Creep anisotropy behavior, deformation mechanism, and its efficient suppression method in Inconel 625 superalloy [J]. J. Mater. Sci. Technol., 2023, 133(0): 58-76. |
[15] | Hongxiang Chen, Zhilong Zhang, Jun Deng, Zhijie Lin, Chunfu Hong, Shixuan Du, Pinqiang Dai. Observation of low thermal expansion behavior and weak thermal anisotropy in M3A2C phases [J]. J. Mater. Sci. Technol., 2023, 154(0): 210-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||