J. Mater. Sci. Technol. ›› 2024, Vol. 179: 174-186.DOI: 10.1016/j.jmst.2023.07.077
• Research Article • Previous Articles Next Articles
Xingge Xu, Hualei Zhang*, Xiangdong Ding*, Jun Sun
Received:
2023-06-18
Revised:
2023-07-28
Accepted:
2023-06-18
Published:
2024-04-20
Online:
2024-04-15
Contact:
*E-mail addresses: Xingge Xu, Hualei Zhang, Xiangdong Ding, Jun Sun. Rapid design and screen high strength U-based high-entropy alloys from first-principles calculations[J]. J. Mater. Sci. Technol., 2024, 179: 174-186.
[1] V.K. Orlov, Met. Sci. Heat Treatment 44 (2002) 467-472. [2] G.H. Lander, E.S. Fisher, S.D. Bader, Adv. Phys. 43(1994) 1-111. [3] J.G. Avery, The effect of alloy content, carbon, oxygen, and nitrogen on the mechanical properties of uranium-2.2 wt% niobium and uranium-0.75 wt%titanium wrought heat treated alloys, Plenum Press, United States, 1973, pp. 1-7. [4] T.I. Jones, D.J. Sandstrom, United States, 1975, pp. 1-10. [5] W.G. Northcutt, United States, 1978, pp. 1-20. [6] J.W. Dini, H.R. Johnson, United States, 1976, pp. 1-50. [7] D.L. Humphreys, J. Alton, D. Roming, United States, 1983, pp. 1-41. [8] M.D. Jepson, R.D. Kehoe, R.W. Nichols, G.F. Slattery, United States, 1958, pp. 1-25. [9] H.H. Chiswik, A.E. Dwight, L.T. Lloyd, M.V. Nevitt, S.T. Zegler, United States, 1958, pp. 1-35. [10] V.V. Kalashnikov, V.V. Titova, G.I. Sergeev, A.G. Samoilov, Sov. At. Energy 5 (1959) 1315-1325. [11] T. Ajantiwalay, C. Smith, D.D. Keiser, A. Aitkaliyeva, J. Nucl. Mater. 540(2020) 152386. [12] D. Meng, X. Chen, D. Chen, Y. Zhao, H. Huang, T. Fa, Mater. Sci. Technol. 28(2020) 31-41. [13] H.M. Volz, R.E. Hackenberg, A.M. Kelly, W.L. Hults, A.C. Lawson, R.D. Field, D. F. Teter, D.J. Thoma, J. Alloys Compd. 4 4 4 (2007) 217-225. [14] D.E. Burkes, R. Prabhakaran, J.F. Jue, F.J. Rice, Metall. Mater. Trans. A Phys.Metall. Mater. Sci. 40(2009) 1069-1079. [15] G. Lagerberg, J. Nucl. Mater. 9(1963) 261-276. [16] L.J. Weirick, Corrosion 31 (1975) 5-14. [17] N.W.S.Morais, D.A. Lopes, C.G. Schön, J. Nucl. Mater. 488(2017) 173-180. [18] B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7(2016) 10602. [19] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158. [20] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230. [21] Z.Z. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102(2019) 296-345. [22] N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, S.J. Zinkle, Acta Mater. 113(2016) 230-244. [23] J. Shi, H. Huang, G. Hu, P. Zhang, C. Jiang, H. Xu, C. Luo, J. Alloys Compd. 860(2021) 158295. [24] J. Shi, Y.W. Zhao, C.L. Jiang, X. Wang, Y.Z. Zhang, D.L. Zou, H.Y. Xu, H. Huang, C. Luo, Mater. Lett. 307(2022) 130822. [25] W.R. Zhang, Y.S. Li, P.K. Liaw, Y. Zhang, Metals (Basel) 12(2022) 699. [26] P. Soderlind, Phys. Rev. B 66 (2002)085113. [27] P. Soderlind, B. Sadigh, V. Lordi, A. Landa, P.E.A. Turchi, J. Nucl. Mater. 4 4 4 (2014) 356-358. [28] P. Soderlind, L.H. Yang, A. Landa, A. Wu, Appl. Sci. 11(2021) 5643. [29] A. Landa, P. Soderlind, P.E.A.Turchi, J. Nucl. Mater. 414(2011) 132-137. [30] A. Landa, P. Soderlind, A. Wu, Appl. Sci.-Basel 10 (2020) 3417. [31] B. Beeler, C. Deo, M. Baskes, M. Okuniewski, J. Nucl. Mater. 433(2013) 143-151. [32] Q.Y. Chen, S.Y. Tan, X.C. Lai, J. Chen, Chin. Phys. B 21 (2012)087801. [33] J.W. Yang, T. Gao, B.Q. Liu, G.A. Sun, B. Chen, J. Nucl. Mater. 458(2015) 122-128. [34] J. Qi, Y. Ren, G. Wu, J. Zhang, K. Chou, CA, 2012, pp. 699-706. [35] B.Q. Liu, L. Xie, X.X. Duan, G.A. Sun, B. Chen, J.M. Song, Y.G. Liu, W.X. Lin, Acta Phys. Sin. Chem. Ed. 62(2013) 365-370. [36] L. Vitos, P.A. Korzhavyi, B. Johansson, Nat. Mater. 2(2003) 25-28. [37] M. Jo, Y.M. Koo, B.J. Lee, B. Johansson, L. Vitos, S.K. Kwon, Proc. Natl. Acad. Sci. U.S.A. 111(2014) 6560-6565. [38] S. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmstrom, S.K. Kwon, L. Vi-tos, Nat.Commun. 9(2018) 2381. [39] H. Zhang, X. Li, S. Schönecker, H. Jesperson, B. Johansson, L. Vitos, Phys. Rev. B 89 (2014) 184107. [40] H. Zhang, B. Johansson, R. Ahuja, L. Vitos, Comput. Mater. Sci. 55(2012) 269-272. [41] X. Sun, H. Zhang, S. Lu, X. Ding, Y. Wang, L. Vitos, Acta Mater. 140(2017) 366-374. [42] H. Zhang, X. Sun, S. Lu, Z. Dong, X. Ding, Y. Wang, L. Vitos, Acta Mater. 155(2018) 12-22. [43] X. Sun, H. Zhang, W. Li, X. Ding, Y. Wang, L. Vitos, Nanomaterials 10 (2020) 59. [44] X. Sun, S. Lu, R. Xie, X. An, W. Li, T. Zhang, C. Liang, X. Ding, Y. Wang, H. Zhang, L. Vitos, Mater. Des. 199(2021) 109396. [45] H.L. Zhang, D.D. Cai, X. Sun, H. Huang, S. Lu, Y.Z. Wang, Q.M. Hu, L. Vitos, X. D. Ding, J. Mater. Sci.Technol. 121(2022) 105-116. [46] L. Vitos, Phys. Rev. B 64 (2001)014107. [47] L. Vitos, London, 2007. [48] P. Soven, Phys. Rev. 156(1967) 809-813. [49] B.L. Gyorffy, Phys. Rev. B 5 (1972) 2382-2384. [50] L. Vitos, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 87(2001) 156401. [51] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868. [52] P.A. Korzhavyi, A.V. Ruban, I.A. Abrikosov, H.L. Skriver, Phys. Rev. B 51 (1995) 5773-5780. [53] P. Söderlind, O. Eriksson, B. Johansson, J.M. Wills, A.M. Boring, Nature 374 (1995) 524-525. [54] G.A. Alers, J.R. Neighbours, J. Appl. Phys. 28(1957) 1514-1514. [55] R. Hill, Proc. Phys. Soc. Sect. A 65 (1952) 349. [56] H.M. Ledbetter, J. Phys. Chem. Ref. Data 6 (1977) 1181-1203. [57] K.M. Knowles, P.R. Howie, J. Elast. 120(2015) 87-108. [58] T.C.T.Ting, J. Mech. Eng. 21(2011) 255-266. [59] M.A. Steiner, E. Garlea, J. Creasy, A. DeMint, S.R. Agnew, J. Nucl. Mater. 500(2018) 184-191. [60] Z.E. Brubaker, S. Ran, A.H. Said, M.E. Manley, P. Soderlind, D. Rosas, Y. Idell, R.J. Zieve, N.P. Butch, J.R. Jeffries, Phys. Rev. B 100 (2019)094311. [61] M.B. Waldron, R.C. Burnett, S.F. Pugh, United Kingdom, 1958. [62] S.L. Li, Nucl. Power Eng. 21(1989) 70-73. [63] F. Maresca, W.A. Curtin, Acta Mater. 182(2020) 235-249. [64] B. Yin, W.A. Curtin, Mater. Res. Lett. 8(2020) 209-215. [65] F. Thiel, D. Geissler, K. Nielsch, A. Kauffmann, S. Seils, M. Heilmaier, D. Utt, K. Albe, M. Motylenko, D. Rafaja, J. Freudenberger, Acta Mater. 185(2020) 400-411. [66] P.E. Armstrong, D.T. Eash, J.E. Hockett, J. Nucl. Mater. 45(1972) 211-216. [67] A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yavari, Nat. Mater. 2(2003) 661-663. [68] R. Xiong, H. Kwon, G.M. Karthik, G.H. Gu, P. Asghari-Rad, S. Son, E.S. Kim, H.S. Kim, Mater. Lett. 303(2021) 130510. [69] P. Chen, J. Fu, X. Xu, C. Lin, J.C. Pang, X.W. Li, R.D.K.Misra, G.D. Wang, H.L. Yi, J. Mater. Sci. Technol. 87(2021) 54-59. [70] C.Duane Wallace, Am. J. Phys. 40(1972) 1718-1719. [71] S.F. Pugh, Philos. Mag. 45(1954) 823-843. [72] Y.L. Hao, S.J. Li, B.B. Sun, M.L. Sui, R. Yang, Phys. Rev. Lett. 98(2007) 216405. [73] D.G. Pettifor, Mater. Sci. Technol. 8(1992) 345-349. [74] R.O. Ritchie, Nat. Mater. 10(2011) 817-822. [75] P. Haasen, Corros. Mater. 14(1963) 156-157. [76] S. McHugh, M. Johnston, Geophys. J. Int. 49(1977) 715-722. [77] E.S. Pacheco, T. Mura, J. Compos. Mater. 3(1969) 664-675. [78] D.M. Barnett, Acta Mater. 15(1967) 589-594. [79] S. Kuramoto, N. Nagasako, T. Furuta, Z. Horita, J. Alloys Compd. 577(2013) S147-S150. [80] D. Akama, T. Tsuchiyama, S. Takaki, J. Iron Steel Inst. Jpn. 103(2017) 230-235. [81] R. Tamura, S. Takeuchi, K. Edagawa, Mater. Sci. Eng. A 309 (2001) 552-556. [82] D.C. Chrzan, M.P. Sherburne, Y. Hanlumyuang, T. Li, J.W. Morris, Phys. Rev. B 82 (2010) 184202. [83] G. Ghosh, G.B. Olson, Acta Mater. 50(2002) 2655-2675. [84] J. Turley, G. Sines, J. Phys. D 4 (1971) 264-271. [85] X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19 (2011) 1275-1281. [86] Y.J. Tian, B. Xu, Z.S. Zhao, Int. J. Refract. Hard Met. 33(2012) 93-106. [87] E.J. Pavlina, C.J.Van Tyne, J.Mater. Eng. Perform. 17(2008) 888-893. [88] W. Lu, Y.W. Shi, X.Y. Li, Y.P. Lei, J. Mater. Eng.Perform. 22(2013) 1694-1700. [89] Y.Z. Tian, L.L. Li, J.J. Li, Y. Yang, S. Li, G.W. Qin, Adv. Eng. Mater. 23(2021) 2001514. [90] X.J. Fan, R.T. Qu, Z.F. Zhang, Acta Metall. Sin.-Engl. Lett. 34(2021) 1461-1482. [91] R. Feng, B.J. Feng, M.C. Gao, C. Zhang, J.C. Neuefeind, J.D. Poplawsky, Y. Ren, K. An, M. Widom, P.K. Liaw, Adv. Mater. 33(2021) 2102401. [92] B.A. Szajewski, F. Pavia, W.A. Curtin, Model. Simul. Mater. Sci. Eng. 23(2015)085008. [93] B.L. Yin, F. Maresca, W.A. Curtin, Acta Mater. 188(2020) 4 86-4 91. [94] F.G. Coury, M. Kaufman, A.J. Clarke, Acta Mater. 175(2019) 66-81. [95] J.R. Cahoon, W.H. Broughton, A.R. Kutzak, Metall. Trans. 2(1971) 1979. [96] J.M. Wills, O. Eriksson, P. Soderlind, A.M. Boring, Phys. Rev. Lett 68 (1992) 2802-2805. [97] P. Soderlind, O. Eriksson, J.M. Wills, A.M. Boring, Phys. Rev. B 48 (1993) 5844-5851. [98] N. Al-Zoubi, S. Schonecker, X.Q. Li, W. Li, B. Johansson, L. Vitos, Comput. Mater. Sci. 159(2019) 273-280. [99] S. Schonecker, X.J. Li, D.X. Wei, S. Nozaki, H. Kato, L. Vitos, X.Q. Li, Mater. Des. 215(2022) 110430. [100] U.F. Kocks, A.S. Argon, M.F. Ashby, Prog. Mater. Sci. 19(1975) 141-145. [101] S. Nemat-Nasser, R. Kapoor, Int. J. Plast. 17(2001) 1351-1366. [102] S. Guo, C.T. Liu, Prog. Nat. Sci. 21 (6) (2011) 433-446. [103] F. Tian, L.K. Varga, N. Chen, J. Shen, L. Vitos, Intermetallics 58 (2015) 1-6. [104] H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, Y. Zhang, Mater. Sci. Eng. A 674 (2016) 203-211. [105] H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, Entropy 18 (2016) 189. [106] S.P. Wang, J. Xu, Intermetallics 95 (2018) 59-72. [107] C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Intermetallics 62 (2015) 76-83. [108] C.C. Juan, K.K. Tseng, W.L. Hsu, M.H. Tsai, C.W. Tsai, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, Mater. Lett. 175(2016) 284-287. [109] C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, J.W. Yeh, J. Alloys Compd. 624(2015) 100-107. [110] Z. Li, W.J. Lai, X. Tong, D.Q. You, W. Li, X.J. Wang, Mater. Sci. Eng. A 845 (2022) 143202. [111] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, S.K. Chen, S.J. Lin, Metall. Mater. Trans. A-Phys.Metall. Mater. Sci. 36(2005) 1263-1271. [112] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloys Compd. 488(2009) 57-64. [113] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62(2014) 105-113. |
[1] | Haoran Sun, Zhigang Ding, Hao Sun, Junjun Zhou, Ji-Chang Ren, Qingmiao Hu, Wei Liu. An efficient scheme for accelerating the calculation of stacking fault energy in multi-principal element alloys [J]. J. Mater. Sci. Technol., 2024, 175(0): 204-211. |
[2] | H.X. Chen, L. Sheng, Z.L. Zhang, X.C. Wen, D.L. Yang, X.Y. Ye, P.Q. Dai. Discovery of new MAX-phase-like layered ternary carbide V8P6C: Crystal structure, thermal expansion, and elastic properties [J]. J. Mater. Sci. Technol., 2024, 174(0): 55-62. |
[3] | Zechun Wang, Shiyao Chen, Shenglan Yang, Qun Luo, Yancheng Jin, Wei Xie, Lijun Zhang, Qian Li. Light-weight refractory high-entropy alloys: A comprehensive review [J]. J. Mater. Sci. Technol., 2023, 151(0): 41-65. |
[4] | S. Shuang, G.J. Lyu, D. Chung, X.Z. Wang, X. Gao, H.H. Mao, W.P. Li, Q.F. He, B.S. Guo, X.Y. Zhong, Y.J. Wang, Y. Yang. Unusually high corrosion resistance in MoxCrNiCo medium entropy alloy enhanced by acidity in aqueous solution [J]. J. Mater. Sci. Technol., 2023, 139(0): 59-68. |
[5] | X.S. Liu, R. Li, X.F. Fan, Q.Q. Liu, X. Tong, A.X. Li, S. Xu, H. Yang, S.B. Yu, M.H. Jiang, C. Huo, P.F. Yu, M.T. Dove, G. Li. Excellent strength-ductility combination in Co36Cr15Fe18Ni18Al8Ti4Mo1 multi-principal element alloys by dual-morphology B2 precipitates strengthening [J]. J. Mater. Sci. Technol., 2023, 134(0): 60-66. |
[6] | Leqing Liu, Xiongjun Liu, Qing Du, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Local chemical ordering and its impact on radiation damage behavior of multi-principal element alloys [J]. J. Mater. Sci. Technol., 2023, 135(0): 13-25. |
[7] | Xudong Liu, Jiangkun Fan, Kai Cao, Fulong Chen, Ruihao Yuan, Degui Liu, Bin Tang, Hongchao Kou, Jinshan Li. Creep anisotropy behavior, deformation mechanism, and its efficient suppression method in Inconel 625 superalloy [J]. J. Mater. Sci. Technol., 2023, 133(0): 58-76. |
[8] | Hongxiang Chen, Zhilong Zhang, Jun Deng, Zhijie Lin, Chunfu Hong, Shixuan Du, Pinqiang Dai. Observation of low thermal expansion behavior and weak thermal anisotropy in M3A2C phases [J]. J. Mater. Sci. Technol., 2023, 154(0): 210-216. |
[9] | Yumin Wang, Bin Yang, Shuangming Li, Xin Cao, Zhongli Liu, Hui Xing. Seaweed pattern formation in the non-axially directional solidification of 2D-like and 3D Al-3 wt.% Mg single crystal [J]. J. Mater. Sci. Technol., 2023, 147(0): 1-5. |
[10] | Wenyu Chen, Rui Zhou, Wanpeng Li, Yen-Hsiang Chen, Tzu-Hsiu Chou, Xu Wang, Yong Liu, Yuntian Zhu, J.C. Huang. Effect of interstitial carbon and nitrogen on corrosion of FeCoCrNi multi-principal element alloys made by selective laser melting [J]. J. Mater. Sci. Technol., 2023, 148(0): 52-63. |
[11] | Feng Guo, Rizheng Han, Jishan Ying, Zeping Zhang, Rui Yang, Xing Zhang. Bioinspired polymeric heart valves derived from polyurethane and natural cellulose fibers [J]. J. Mater. Sci. Technol., 2023, 144(0): 178-187. |
[12] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[13] | Timothy Alexander Listyawan, Maya Putri Agustianingrum, Young Sang Na, Ka Ram Lim, Nokeun Park. Improving high-temperature oxidation behavior by modifying Al and Co content in Al-Co-Cr-Fe-Ni high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 129(0): 115-126. |
[14] | K. Gao, X.G. Zhu, L. Chen, W.H. Li, X. Xu, B.T. Pan, W.R. Li, W.H. Zhou, L. Li, W. Huang, Y. Li. Recent development in the application of bulk metallic glasses [J]. J. Mater. Sci. Technol., 2022, 131(0): 115-121. |
[15] | B.Q. Shi, L.Y. Zhao, X.L. Shang, B.H. Nie, D.C. Chen, C.Q. Li, Y.Q. Cheng. Reduction effect of final-pass heavy reduction rolling on the texture development, tensile property and stretch formability of ZWK100 alloy plates [J]. J. Mater. Sci. Technol., 2022, 111(0): 211-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||