J. Mater. Sci. Technol. ›› 2022, Vol. 98: 151-159.DOI: 10.1016/j.jmst.2021.04.064
• Research Article • Previous Articles Next Articles
Ranveer Singha, QadeerAkbar Sialb, Seung-ik Hanb, Sanghee Nahc, Ji-Yong Parkb,d, Hyungtak Seoa,b,*()
Received:
2021-02-24
Revised:
2021-04-24
Accepted:
2021-04-25
Published:
2022-01-30
Online:
2022-01-25
Contact:
Hyungtak Seo
About author:
*E-mail address: hseo@ajou.ac.kr (H. Seo).Ranveer Singh, QadeerAkbar Sial, Seung-ik Han, Sanghee Nah, Ji-Yong Park, Hyungtak Seo. Nanoscale visualization of hot carrier generation and transfer at non-noble metal and oxide interface[J]. J. Mater. Sci. Technol., 2022, 98: 151-159.
Fig. 1. Carrier generation and transport at metal-semiconductor interface. (a) Schematic diagram of the device. (b) Schematic representation of scattering and injection of hot carriers. Hot carriers with sufficient momentum and kinetic energy can cross the Schottky barrier. (c) Schematic of nanoscale electrical measurements conducted using atomic force microscopy..
Fig. 2. Surface morphology and compositional characterization. (a) AFM and (b) planar-view SEM images of TiN/MoOx/TiN thin films show granular nanostructures. The observed nanostructures are marked by blue circles. (c) Cross-sectional SEM image of TiN/MoOx/TiN films grown on Si substrate. (d) EDS spectra of the full device, confirming the presence of titanium (Ti), nitrogen (N), molybdenum (Mo), oxygen (O), and silicon (Si). XPS spectra corresponding to (e) Ti, (f) N, (g) Mo, and (h) O. The inset in (f) shows the XPS spectra of O in the TiN film..
Fig. 3. Local probe EFM and KPFM measurements. EFM maps of MoOx/TiN corresponding to different Vtip: (a) +5.0 V, (b) 0.0 V, and (c) -5.0 V. EFM maps of TiN/MoOx/TiN corresponding to different Vtip: (d) +5.0 V, (e) 0.0 V, and (f) -5.0 V. The bright contrast represents the presence of negative charges at the surface corresponding to negative Vtip. (g) and (h) Phase change as a function of applied bias on Vtip under dark and white light illumination conditions for MoOx/TiN and TiN/MoOx/TiN, respectively. Shifting of the parabola under white light illumination indicates improved charge transfer. (i) Change in surface potential (ΔVCPD) of MoOx/TiN and TiN/MoOx/TiN as a function of light intensity. The scale bar is 400 nm for all EFM phase images.
Fig. 4. Nanoscale electrical current measurements. Current map of the TiN/MoOx/TiN device under 0 bias at the nanoscale (a) under dark and (b) under white light illumination, confirming the generation and injection of charge carriers. (c) Change in current without any bias with increasing intensity of light illumination. The current reaches the initial value after the light is switched off. (d) Local current-voltage measurements of the TiN/MoOx/TiN device.
Fig. 5. Femtosecond TA dynamics. Spectrally resolved TA (ΔT/T) surface maps of (a) TiN, (b) MoOx/TiN, and (c) TiN/ MoOx/TiN as a function of the pump-probe time delay (t). (d) TA spectra of TiN (dark blue), MoOx/TiN (light blue), and TiN/ MoOx/TiN (red) films at t = 0.5 ps as a function of probe wavelength. TA intensity changes of three films as a function of the pump-probe time delay (e) at 650 nm and (f) at 770 nm.
[1] |
M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Science 332 (2011) 702-704.
DOI PMID |
[2] |
W. Li, Z.J. Coppens, L.V. Besteiro, W. Wang, A.O. Govorov, J. Valentine, Nat. Commun. 6 (2015) 8379.
DOI URL |
[3] |
Y.-.Y. Cai, J.G. Liu, L.J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W.-.S. Chang, P. Nordlander, S. Link, ACS Nano 12 (2018) 976-985.
DOI URL |
[4] |
P. Christopher, H. Xin, S. Linic, Nat. Chem. 3 (2011) 467-472.
DOI PMID |
[5] |
E. Cortés, W. Xie, J. Cambiasso, A.S. Jermyn, R. Sundararaman, P. Narang, S. Schlücker, S.A. Maier, Nat. Commun. 8 (2017) 14880.
DOI URL |
[6] | L. Zhou, D.F. Swearer, H. Robatjazi, A. Alabastri, P. Christopher, E.A. Carter, P. Nordlander, N.J. Halas, Science (80-. ) 364 (2019) 69-72. |
[7] |
M.A. Green, S. Pillai, Nat. Photonics 6 (2012) 130-132.
DOI URL |
[8] |
H.A. Atwater, A. Polman, Nat. Mater. 9 (2010) 205-213.
DOI PMID |
[9] |
J. Li, S.K. Cushing, J. Bright, F. Meng, T.R. Senty, P. Zheng, A.D. Bristow, N. Wu, ACS Catal 3 (2013) 47-51.
DOI URL |
[10] | T.P. Rossi, P. Erhart, M. Kuisma, ACS Nano 8 (2020) 9963-9971. |
[11] |
S. Ishii, S.L. Shinde, W. Jevasuwan, N. Fukata, T. Nagao, ACS Photonics 3 (2016) 1552-1557.
DOI URL |
[12] |
G. Tagliabue, A.S. Jermyn, R. Sundararaman, A.J. Welch, J.S. DuChene, R. Pala, A.R. Davoyan, P. Narang, H.A. Atwater, Nat. Commun. 9 (2018) 3394.
DOI PMID |
[13] |
D. Zhou, X. Li, Q. Zhou, H. Zhu, Nat. Commun. 11 (2020) 2944.
DOI URL |
[14] |
R. Singh, S.A. Mollick, M. Saini, P. Guha, T. Som. J. Appl. Phys. 125 (2019) 164302.
DOI URL |
[15] | S. Ishii, S.L. Shinde, T. Nagao, Adv. Opt. Mater. 7 (2019) 1-13. |
[16] |
A. Manjavacas, J.G. Liu, V. Kulkarni, P. Nordlander, ACS Nano 8 (2014) 7630-7638.
PMID |
[17] |
H. Shan, Y. Yu, X. Wang, Y. Luo, S. Zu, B. Du, T. Han, B. Li, Y. Li, J. Wu, F. Lin, K. Shi, B.K. Tay, Z. Liu, X. Zhu, Z. Fang, Light Sci. Appl. 8 (2019) 9.
DOI URL |
[18] |
Y. Liu, Q. Chen, D.A. Cullen, Z. Xie, T. Lian, Nano Lett 20 (2020) 4322-4329.
DOI URL |
[19] |
K. Wu, J. Chen, J.R. McBride, T. Lian, Science (80-. ) 349 (2015) 632-635.
DOI URL |
[20] |
T. Gong, J.N. Munday, Appl. Phys. Lett. 110 (2017) 021117.
DOI URL |
[21] |
S.W. Chung, E.A. Guliants, C.E. Bunker, P.A. Jelliss, S.W. Buckner, J. Phys. Chem. Solids 72 (2011) 719-724.
DOI URL |
[22] | G. Naik, J. Kim, N. Kinsey, A. Boltasseva, Else- vier B.V., 2014. |
[23] |
A.B. Dongil, Nanomaterials 9 (2019) 1111.
DOI URL |
[24] |
R. Singh, T. Som, Sol. Energy 208 (2020) 275-281.
DOI URL |
[25] |
B. Bahrami, A.H. Chowdhury, A. Gurung, S. Mabrouk, K.M. Reza, S.I. Rahman, R. Pathak, Q. Qiao, Nano Today 33 (2020) 100874.
DOI URL |
[26] | A.J. Nozik, G. Conibeer, M.C. Beard, RSC Energy and Environment, 2014. |
[27] |
S.K. Cushing, J. Li, J. Bright, B.T. Yost, P. Zheng, A.D. Bristow, N. Wu, J. Phys. Chem. C 119 (2015) 16239-16244.
DOI URL |
[28] |
F. Wang, N.A. Melosh, Nano Lett 11 (2011) 5426-5430.
DOI URL |
[29] |
T. Gong, J.N. Munday, Nano Lett 15 (2015) 147-152.
DOI PMID |
[30] |
Z. Zhang, J.T. Yates, Chem. Rev. 112 (2012) 5520-5551.
DOI PMID |
[31] |
K. Wei, Y. Sui, Z. Xu, Y. Kang, J. You, Y. Tang, H. Li, Y. Ma, H. Ouyang, X. Zheng, X. Cheng, T. Jiang, Nat. Commun. 11 (2020) 3876.
DOI PMID |
[32] |
G. Greczynski, L. Hultman, Appl. Phys. Lett. 109 (2016) 211602.
DOI URL |
[33] | J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Perkin-Elmer Corporation Physical Elec- tronics Division, 1992. |
[34] |
R. Singh, R. Sivakumar, S.K. Srivastava, T. Som, Appl. Surf. Sci. 507 (2020) 144958.
DOI URL |
[35] |
W. Chen, J. Liu, W.Z. Ma, G.X. Yu, J.Q. Chen, H.Y. Cai, C.F. Yang, Appl. Sci. 10 (2020) 1-10.
DOI URL |
[36] | X. Fang, Z. Wei, D. Fang, X. Chu, J. Tang, D. Wang, X. Wang, J. Li, Y. Li, B. Yao, X. Wang, R. Chen, ACS Omega 3 (2018) 4 412-4 417. |
[37] |
F. Marchi, R. Dianoux, H.J.H. Smilde, P. Mur, F. Comin, J. Chevrier, J. Electrostat. 66 (2008) 538-547.
DOI URL |
[38] |
R. Singh, A. Dutta, N. Basu, J. Lahiri, T. Som, Sol. Energy 215 (2021) 1-11.
DOI URL |
[39] |
C.H. Lei, A. Das, M. Elliott, J.E. Macdonald, Nanotechnology 15 (2004) 627-634.
DOI URL |
[40] |
P. Girard, Nanotechnology 12 (2001) 485-490.
DOI URL |
[41] |
X.D. Dang, A.B. Tamayo, J. Seo, C.V. Hoven, B. Walker, T.Q. Nguyen, Adv. Funct. Mater. 20 (2010) 3314-3321.
DOI URL |
[42] |
D.C. Coffey, O.G. Reid, D.B. Rodovsky, G.P. Bartholomew, D.S. Ginger, Nano Lett. 7 (2007) 738-744.
PMID |
[1] | Yuting Gao, Feng Chen, Zhe Chen, Hongfei Shi. NixCo1-xS as an effective noble metal-free cocatalyst for enhanced photocatalytic activity of g-C3N4 [J]. J. Mater. Sci. Technol., 2020, 56(0): 227-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||