J. Mater. Sci. Technol. ›› 2022, Vol. 131: 253-263.DOI: 10.1016/j.jmst.2022.05.041
• Research Article • Previous Articles Next Articles
Xuan Kong, Wenyao Sun*(
), Qunchang Wang, Minghui Chen*(
), Tao Zhang, Fuhui Wang
Received:2022-03-03
Revised:2022-05-06
Accepted:2022-05-23
Published:2022-06-20
Online:2022-06-20
Contact:
Wenyao Sun,Minghui Chen
About author:mhchen@mail.neu.edu.cn (M. Chen)Xuan Kong, Wenyao Sun, Qunchang Wang, Minghui Chen, Tao Zhang, Fuhui Wang. Improving high-temperature wear resistance of NiCr matrix self-lubricating composites by controlling oxidation and surface texturing[J]. J. Mater. Sci. Technol., 2022, 131: 253-263.
| Sample | Composition (wt%) |
|---|---|
| N | Ni20Cr |
| NW | Ni20Cr + 15% WS2 |
| NW15T | Ni20Cr + 15% WS2 + 15% Ti |
Table 1. Composition of the mixed powders or composites.
| Sample | Composition (wt%) |
|---|---|
| N | Ni20Cr |
| NW | Ni20Cr + 15% WS2 |
| NW15T | Ni20Cr + 15% WS2 + 15% Ti |
| Spot | Ni | Cr | W | Ti | S |
|---|---|---|---|---|---|
| 1 | 36.65 | 31.69 | 1.18 | / | 30.48 |
| 2 | 24.52 | 25.53 | 41.70 | / | 8.25 |
| 3 | 59.68 | 17.55 | 4.41 | 18.14 | 0.22 |
| 4 | 3.12 | 17.53 | 0.26 | 45.78 | 33.31 |
Table 2. EDS analysis at spots denoted in Fig. 1 (at.%).
| Spot | Ni | Cr | W | Ti | S |
|---|---|---|---|---|---|
| 1 | 36.65 | 31.69 | 1.18 | / | 30.48 |
| 2 | 24.52 | 25.53 | 41.70 | / | 8.25 |
| 3 | 59.68 | 17.55 | 4.41 | 18.14 | 0.22 |
| 4 | 3.12 | 17.53 | 0.26 | 45.78 | 33.31 |
Fig. 2. Tribological properties of NiCr alloy and the composites NW and NW15T at high temperatures: frication coefficient at (a) 600 °C and (b) 800 °C, (c) wear rate.
Fig. 3. Surface morphologies (a, b, d, e) and cross sectional profiles (c, f) of wear scar after sliding at high temperatures on the composites: (a-c) NW, (d-f) NW15T.
Fig. 4. Cross-section microstructures under worn scar after sliding at high temperatures: (a) NW, 600 °C, (b) NW, 800 °C, (c) NW15T, 600 °C, and (d) NW15T, 800 °C.
Fig. 5. Morphologies at wear surface of coupled balls (a, b) and wear debris (c, d) of the two composites after sliding at 800 °C for 30 min: (a, c) NW and (b, d) NW15T.
Fig. 6. (a) Micro hardness at places inside or outside the wear scar, and (b) Raman spectra inside wear scar of the composites NW and NW15T after sliding at 800 °C.
Fig. 7. Microstructures of glaze layer formed on NW15T after sliding at 800 °C: (a) low magnification TEM image, (b) enlarged view of the yellow boxed area in (a) and correspongding EDS analysis; (c-f) high resolution TEM micrograph and diffraction patterns at areas noted by yellow marks in (b).
| Spot | Ni | Cr | W | Ti | O | S |
|---|---|---|---|---|---|---|
| 1 | 84.12 | 6.48 | 8.46 | 0.48 | 0.40 | 0.06 |
| 2 | 67.64 | 18.95 | 1.05 | 1.96 | 9.79 | 0.61 |
| 3 | 0.50 | 42.60 | 1.27 | 10.87 | 44.76 | 0 |
| 4 | 37.20 | 22.63 | 1.23 | 6.88 | 31.45 | 0.61 |
Table 3. EDS analysis at spots denoted in Fig. 7 (at.%).
| Spot | Ni | Cr | W | Ti | O | S |
|---|---|---|---|---|---|---|
| 1 | 84.12 | 6.48 | 8.46 | 0.48 | 0.40 | 0.06 |
| 2 | 67.64 | 18.95 | 1.05 | 1.96 | 9.79 | 0.61 |
| 3 | 0.50 | 42.60 | 1.27 | 10.87 | 44.76 | 0 |
| 4 | 37.20 | 22.63 | 1.23 | 6.88 | 31.45 | 0.61 |
Fig. 9. (a) Surface morphology and EDS analysis, (b) GI-XRD pattern, and (c) 3D mapping of scale formed on the composite NW after oxidation at 800 °C for 30 min.
Fig. 10. (a) surface morphology and EDS analysis, (b) GI-XRD pattern, and (c) 3D mapping of scale formed on the composite NW15T after oxidation at 800 °C for 30 min.
| Oxide | Electronic charge (Z) | Radius of cation (r, Å) | Ionic potential (Z/r) |
|---|---|---|---|
| TiO2 | 4 | 0.64 | 5.8 |
| NiO | 2 | 0.69 | 2.8 |
| Cr2O3 | 3 | 0.61 | 4.9 |
Table 4. Ionic potentials of certain oxides [38].
| Oxide | Electronic charge (Z) | Radius of cation (r, Å) | Ionic potential (Z/r) |
|---|---|---|---|
| TiO2 | 4 | 0.64 | 5.8 |
| NiO | 2 | 0.69 | 2.8 |
| Cr2O3 | 3 | 0.61 | 4.9 |
| [1] |
W. Duan, Y. Sun, C. Liu, G. Ran, L. Yu, Tribol. Int. 95 (2016) 324-332.
DOI URL |
| [2] |
J. Luo, W. Sun, R. Duan, W. Yang, K. Chan, F. Ren, X. Yang, J. Mater. Sci. Technol. 110 (2022) 43-56.
DOI URL |
| [3] | B. Parveez, M. Wani, Tribol. Int. 159 (2021) 106969. |
| [4] |
N. Espallargas, S. Mischler, Tribol. Int. 43 (2010) 1209-1217.
DOI URL |
| [5] |
M. Rahman, J. Ding, A. Beheshti, A. Polycarpou, Tribol. Int. 123 (2018) 372-384.
DOI URL |
| [6] |
F. Li, J. Chen, Z. Qiao, J. Ma, Tribol. Lett. 49 (2013) 573-577.
DOI URL |
| [7] |
P. Kaline, N. Aloisio, Tribol. Int. 120 (2018) 280-298.
DOI URL |
| [8] |
E. Hao, Y. An, J. Chen, X. Zhao, G. Hou, J. Chen, M. Gao, J. Mater. Sci. Technol. 75 (2021) 164-173.
DOI URL |
| [9] |
A. Zhang, J. Han, B. Su, P. Li, J. Meng, Mater. Des. 114 (2017) 253-263.
DOI URL |
| [10] |
M. Yang, X. Liu, J. Fan, X. He, S. Shi, G. Fu, M. Wang, S. Chen, Appl. Surf. Sci. 258 (2012) 3757-3762.
DOI URL |
| [11] |
X. Lu, X. Liu, P. Yu, G. Fu, G. Zhu, Y. Wang, Y. Chen, Tribol. Int. 101 (2016) 356-363.
DOI URL |
| [12] |
Y. Zhai, X. Liu, S. Qiao, M. Wang, X. Lu, Y. Wang, Y. Chen, L. Ying, Opt. Laser Technol. 89 (2017) 97-107.
DOI URL |
| [13] |
J. Li, D. Xiong, Wear 265 (2008) 533-539.
DOI URL |
| [14] |
J. Zhen, J. Cheng, M. Li, S. Zhu, Tribol. Int. 109 (2017) 174-181.
DOI URL |
| [15] |
J. Jiang, F. Stott, M. Stack, Wear 256 (2004) 973-985.
DOI URL |
| [16] |
C. Yin, Y. Liang, W. Li, M. Yang, Acta Mater. 166 (2019) 208-220.
DOI URL |
| [17] |
I. Inman, S. Rose, P. Datta, Wear 260 (2006) 919-932.
DOI URL |
| [18] |
I. Inman, S. Datta, H. Du, J. Burnell-Gray, Q. Luo, Wear 254 (2003) 461-467.
DOI URL |
| [19] | A. Dreano, S. Fouvry, S. Sao-Joao, J. Galipaud, Wear 440 (2019) 203101. |
| [20] | A. Dreano, S. Baydoun, S. Fouvry, S. Nar, P. Alvarez, Wear 488 (2022) 204144. |
| [21] | A. Viat, A. Dreano, S. Fouvry, Wear 376 (2017) 1043-1054. |
| [22] | Y. Xue, X. Shi, Q. Huang, K. Zhang, C. Wu, Tribol. Int. 161 (2021) 107099. |
| [23] |
H. Costa, I. Hutchings, J. Mater, Process. Technol. 209 (2009) 3869-3878.
DOI URL |
| [24] |
U. Pettersson, S. Jacobson, Tribol. Int. 39 (2006) 695-700.
DOI URL |
| [25] |
I. Etsion, J. Tribol. 127 (2005) 248-253.
DOI URL |
| [26] |
X. Kong, Y. Liu, M. Chen, T. Zhang, Q. Wang, F. Wang, J. Mater. Sci. Technol. 105 (2022) 142-152.
DOI URL |
| [27] |
M. Yang, X. Liu, J. Fan, X. He, S. Shi, G. Fu, Appl. Surf. Sci. 258 (2012) 3757-3762.
DOI URL |
| [28] |
X. Liu, C. Zheng, Y. Liu, J. Fan, M. Yang, J. Mater. Process. Technol. 213 (2013) 51-58.
DOI URL |
| [29] |
C. Greiner, Z. Liu, R. Schneider, L. Pastewka, Scr. Mater. 153 (2018) 63-67.
DOI URL |
| [30] | C. Greiner, J. Gagel, P. Gumbsch, Adv. Mater. 31 (2019) 1806705. |
| [31] | P.C. Machado, J.I. Pereira, A. Sinatora, Wear 486 (2021) 204111. |
| [32] |
W. Zhu, C. Zhao, Y. Zhang, C. Kwok, J. Luan, Z. Jiao, Acta Mater. 188 (2020) 697-710.
DOI URL |
| [33] |
A.V. Murugan, S. Violet, S. Navale, C. Ravi, Mater. Lett. 60 (2006) 1791-1792.
DOI URL |
| [34] |
D. Taylor, P. Fleig, R. Page, Thin Solid Films 408 (2002) 104-110.
DOI URL |
| [35] | G. Danappa, C. Raghavendra, R. Swamy, N. Kishan, Mater. Today Proc. 38 (2021) 2797-2802. |
| [36] | X. Chen, Z. Han, X. Li, K. Lu, Sci. Adv. 2 (2016) 1-7. |
| [37] |
H. Padilla, B. Boyce, C. Battaile, Wear 297 (2013) 860.
DOI URL |
| [38] |
A. Erdemir, Tribol. Lett. 8 (2000) 97-102.
DOI URL |
| [1] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
| [2] | M.M. Costa, A. Miranda, F. Bartolomeu, O. Carvalho, S. Matos, G. Miranda, F.S. Silva. NiTi laser textured implants with improved in vivo osseointegration: An experimental study in rats [J]. J. Mater. Sci. Technol., 2022, 114(0): 120-130. |
| [3] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
| [4] | Xiangyu Zhong, Xinqiang Wu, En-Hou Han. Characteristics of Oxidation and Oxygen Penetration of Alloy 690 in 600 °C Aerated Supercritical Water [J]. J. Mater. Sci. Technol., 2018, 34(3): 561-569. |
| [5] | Yanjun XI, Fuhui WANG, Lianlong HE. Protective Effect of the Sputtered TiAlCrAg Coating on the High-Temperature Oxidation and Hot Corrosion Resistance of Ti-Al-Nb Alloy [J]. J Mater Sci Technol, 2004, 20(06): 724-727. |
| [6] | Mengjin LI, Xiaofeng SUN, Hengrong GUAN, Xiaoxia JIANG, Zhuangqi HU. Oxidation Behevior of Pd-Modified Aluminide Coating at High Temperature [J]. J Mater Sci Technol, 2003, 19(03): 213-217. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
