J. Mater. Sci. Technol. ›› 2022, Vol. 130: 157-165.DOI: 10.1016/j.jmst.2022.05.013
• Research Article • Previous Articles Next Articles
Jinbo Cheng, Bowen Liu(
), Yanqin Wang, Haibo Zhao(
), Yuzhong Wang
Received:2022-04-04
Revised:2022-05-08
Accepted:2022-05-10
Published:2022-12-10
Online:2022-12-07
Contact:
Bowen Liu,Haibo Zhao
About author:E-mail addresses: haibor7@163.com (H. Zhao)Jinbo Cheng, Bowen Liu, Yanqin Wang, Haibo Zhao, Yuzhong Wang. Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption[J]. J. Mater. Sci. Technol., 2022, 130: 157-165.
| Samples | RLmin (dB) | d (mm) | EAB (GHz) | d (mm) | Refs. |
|---|---|---|---|---|---|
| NiCo-LDH/MXene hybrid | -64.24 | 2.18 | 4.48 | 2 | [ |
| NiSe2-CoSe2@C/Ti3C2Tx | -60.46 | 2.6 | 5.68 | 2.2 | [ |
| MXene@Fe3O4 | -63.3 | 1.8 | 5.2 | 1.8 | [ |
| MXene-MoS2 | -46.72 | 2 | 4.32 | 2 | [ |
| NiFe2O4@SiO2@MXene | -52.8 | 2 | 7.2 | 1.5 | [ |
| NiCo/CeO2/Ti3C2Tx | -42.48 | 2 | 6.32 | 1.9 | [ |
| CuS/Ti3C2Tx | -45.3 | 3.5 | 5.2 | 2 | [ |
| Single-layer Ti3C2Tx | -43.5 | 1.8 | 6.88 | 1.8 | [ |
| CNT/BaFe12O19 | -43.9 | 1.5 | 3.9 | 1.5 | [ |
| Ti3C2Tx/CNT | -52.9 | 2.4 | 4.46 | 1.55 | [ |
| Ti3C2Tx@ZnO | -57.4 | 2 | 6.56 | 2.3 | [ |
| WS2 nanosheets/CNTs | -51.6 | 1.95 | 5.4 | 1.95 | [ |
| CoNi@NCNT | -64.5 | 3.125 | 3.8 | 2 | [ |
| GA-CNT-CoNi aerogel | -56.8 | 1.5 | 7.8 | 1.5 | [ |
| MXene-CoNi@NCNT-800 | -55.3 | 2.1 | 4.3 | 1.5 | This work |
Table 1. Microwave absorption performances for MXene-CoNi@NCNT composites and other MXene-based or CNT-based absorbers in recent literature.
| Samples | RLmin (dB) | d (mm) | EAB (GHz) | d (mm) | Refs. |
|---|---|---|---|---|---|
| NiCo-LDH/MXene hybrid | -64.24 | 2.18 | 4.48 | 2 | [ |
| NiSe2-CoSe2@C/Ti3C2Tx | -60.46 | 2.6 | 5.68 | 2.2 | [ |
| MXene@Fe3O4 | -63.3 | 1.8 | 5.2 | 1.8 | [ |
| MXene-MoS2 | -46.72 | 2 | 4.32 | 2 | [ |
| NiFe2O4@SiO2@MXene | -52.8 | 2 | 7.2 | 1.5 | [ |
| NiCo/CeO2/Ti3C2Tx | -42.48 | 2 | 6.32 | 1.9 | [ |
| CuS/Ti3C2Tx | -45.3 | 3.5 | 5.2 | 2 | [ |
| Single-layer Ti3C2Tx | -43.5 | 1.8 | 6.88 | 1.8 | [ |
| CNT/BaFe12O19 | -43.9 | 1.5 | 3.9 | 1.5 | [ |
| Ti3C2Tx/CNT | -52.9 | 2.4 | 4.46 | 1.55 | [ |
| Ti3C2Tx@ZnO | -57.4 | 2 | 6.56 | 2.3 | [ |
| WS2 nanosheets/CNTs | -51.6 | 1.95 | 5.4 | 1.95 | [ |
| CoNi@NCNT | -64.5 | 3.125 | 3.8 | 2 | [ |
| GA-CNT-CoNi aerogel | -56.8 | 1.5 | 7.8 | 1.5 | [ |
| MXene-CoNi@NCNT-800 | -55.3 | 2.1 | 4.3 | 1.5 | This work |
Fig. 1. (a) XRD pattern and (b) Raman spectra in the range of 1000-2000 cm-1 for different samples, (c) Raman spectrum for MXene-CoNi@NCNT-800 composite in the range of 100-2000 cm-1, (d) XPS survey spectra for MXene-CoNi@NCNT-700/800/900 composites, and core-level spectrum of (e) Co 2p, (f) Ni 2p, (g) C 1 s, (h) N1s, (i) Ti 2p for MXene-CoNi@NCNT-800 composite.
Fig. 4. (a) TG curves in air, (b) magnetization curves, (c) nitrogen sorption isotherms, and size distributions (inserted) based on the Barrett-Joyner-Halenda method for MXene-CoNi@NCNT-700/800/900 composites.
Fig. 6. (a) Real parts of permittivity (ε′), (b) imaginary parts of permittivity (ε″), and (c) dielectric tangent loss values (ε″/ε′) for MXene-CoNi@NCNT-700/800/900 composites; (d) ε′-ε″ plots for MXene-CoNi@NCNT-700 composite, (e) MXene-CoNi@NCNT-800 composite, and (f) MXene-CoNi@NCNT-900 composite. (g) Real parts of permeability (μ′), (h) imaginary parts of permeability (μ″), and (i) permeability tangent loss values (μ″/μ′) for MXene-CoNi@NCNT-700/800/900 composites.
Fig. 7. Frequency dependences of (a) relative impedance matching (|Zin/Z0|) at 2.1 mm and (b) attenuation constants for MXene-CoNi@NCNT-700/800/900 composites.
| [1] | Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem.-Int. Edit. 61 (2022) e202200705. |
| [2] |
Y.L. Zhang, K.P. Ruan, J.W. Gu, Small 17 (2021) 2101951.
DOI URL |
| [3] |
M. Yuan, M. Zhou, H.Q. Fu, Compos. Pt. B-Eng. 224 (2021) 109178.
DOI URL |
| [4] |
J.B. Cheng, H.B. Zhao, M. Cao, M.E. Li, A.N. Zhang, S.L. Li, Y.Z. Wang, ACS Appl. Mater. Interfaces 12 (2020) 26301-26312.
DOI URL |
| [5] | J.B. Cheng, H.B. Zhao, M.G. Li, S.L. Li, Y.Z. Wang, Mater. China 38 (2019) 870-905. |
| [6] |
J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Carbon 183 (2021) 205-215.
DOI URL |
| [7] |
S.S. Xiao, H. Mei, D.Y. Han, L.F. Cheng, Compos. Pt. B-Eng. 183 (2020) 107629.
DOI URL |
| [8] |
X.F. Shi, Z.W. Liu, W.B. You, X.B. Zhao, R.C. Che, J. Mater. Chem. C 6 (2018) 7790-7796.
DOI URL |
| [9] |
L. Zhang, B.W. Liu, Y.Z. Wang, T. Fu, H.B. Zhao, Compos. Pt. B-Eng. 238 (2022) 109944.
DOI URL |
| [10] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
| [11] | P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, Nano-Micro Lett. 14 (2022) 51. |
| [12] |
J.B. Cheng, H.G. Shi, M. Cao, T. Wang, H.B. Zhao, Y.Z. Wang, Mater. Adv. 1 (2020) 2631-2645.
DOI URL |
| [13] |
Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu, Y.Z. Wang, Nano-Micro Lett. 14 (2022) 76.
DOI URL |
| [14] |
Y.H. Cui, Z.H. Liu, Y.F. Zhang, P. Liu, M. Ahmad, Q.Y. Zhang, B.L. Zhang, Carbon 181 (2021) 58-68.
DOI URL |
| [15] |
S.J. Wang, D.S. Li, Y. Zhou, L. Jiang, ACS Nano 14 (2020) 8634-8645.
DOI URL |
| [16] |
Z. Xiang, Y.Y. Shi, X.J. Zhu, L. Cai, W. Lu, Nano-Micro Lett. 13 (2021) 150.
DOI PMID |
| [17] | X. Li, W.B. You, C.Y. Xu, L. Wang, L.T. Yang, Y.S. Li, R.C. Che, Nano-Micro Lett. 13 (2021) 157. |
| [18] |
G.L. Zhao, H.P. Lv, Y. Zhou, X.T. Zheng, C. Wu, C. Xu, ACS Appl. Mater. Interfaces 10 (2018) 42925-42932.
DOI URL |
| [19] |
Y.C. Qing, W.C. Zhou, F. Luo, D.M. Zhu, Ceram. Int. 42 (2016) 16412-16416.
DOI URL |
| [20] |
Y.H. Cui, K. Yang, J.Q. Wang, T. Shah, Q.Y. Zhang, B.L. Zhang, Carbon 172 (2021) 1-14.
DOI URL |
| [21] |
L. Jin, J.Q. Wang, F. Wu, Y.N. Yin, B.L. Zhang, Carbon 182 (2021) 770-780.
DOI URL |
| [22] |
C.Y. Wen, X. Li, R.X. Zhang, C.Y. Xu, W.B. You, Z.W. Liu, B. Zhao, R.C. Che, ACS Nano 16 (2022) 1150-1159.
DOI URL |
| [23] |
F. Chen, S.S. Zhang, B.B. Ma, Y. Xiong, H. Luo, Y.Z. Cheng, X.C. Li, X. Wang, R.Z. Gong, Chem. Eng. J. 431 (2022) 134007.
DOI URL |
| [24] |
X. Zhang, H.H. Wang, R. Hu, C.Y. Huang, W.J. Zhong, L.M. Pan, Y.B. Feng, T. Qiu, C.F. Zhang, J. Yang, Appl. Surf. Sci. 484 (2019) 383-391.
DOI URL |
| [25] |
J.B. Cheng, W.J. Yuan, A.N. Zhang, H.B. Zhao, Y.Z. Wang, J. Mater. Chem. C 8 (2020) 13712.
DOI URL |
| [26] |
Y.Q. Wang, R.T. Liu, J.F. Zhang, M. Miao, X. Feng, Appl. Surf. Sci. 546 (2021) 149143.
DOI URL |
| [27] |
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28 (2016) 4 86-4 90.
DOI URL |
| [28] | Y. Cheng, J.M. Cao, H.L. Lv, H.Q. Zhao, Y. Zhao, G.B. Ji, Inorg. Chem. Fron. 6 (2019) 309-316. |
| [29] |
A.N. Zhang, H.B. Zhao, J.B. Cheng, M.E. Li, S.L. Li, M. Cao, Y.Z. Wang, Chem. Eng. J. 410 (2021) 128361.
DOI URL |
| [30] | B.W. Liu, H.B. Zhao, Y.Z. Wang, Adv. Mater. (2021) 2107905. |
| [31] | P.T. Hu, S. Dong, X.T. Li, J.M. Chen, P. Hu, A.C.S. Sustain, Chem. Eng. 8 (2020) 10230-10241. |
| [32] |
C.P. Li, J. Sui, Z.Q. Zhang, X.H. Jiang, Z.M. Zhang, L.M. Yu, Chem. Eng. J. 375 (2019) 122017.
DOI URL |
| [33] |
Y. Dai, X.Y. Wu, Z.S. Liu, H.B. Zhang, Z.Z. Yu, Compos. Pt. B-Eng. 200 (2020) 108263.
DOI URL |
| [34] |
N. Yang, Z.X. Luo, G.R. Zhu, S.C. Chen, X.L. Wang, G. Wu, Y.Z. Wang, ACS Appl. Mater. Interfaces 11 (2019) 35987-35998.
DOI URL |
| [35] |
X.R. Gao, Z.R. Jia, B.B. Wang, X.M. Wu, T. Sun, X.H. Liu, Q.G. Chi, G.L. Wu, Chem. Eng. J. 419 (2021) 130019.
DOI URL |
| [36] |
Y.C. Yin, X.F. Liu, X.J. Wei, R.H. Yu, J.L. Shui, ACS Appl. Mater. Interfaces 8 (2016) 34686-34698.
DOI URL |
| [37] |
Y. Cheng, J.M. Cao, Y. Li, Z.Y. Li, H.Q. Zhao, G.B. Ji, Y.W. Du, ACS Sustain. Chem. Eng. 6 (2017) 1427-1435.
DOI URL |
| [38] |
Y.Y. Wang, Y. Song, W.J. Sun, K. Dai, D.X. Yan, Z.M. Li, J. Mater. Sci. Technol. 102 (2022) 115-122.
DOI URL |
| [39] |
H.B. Zhao, Z.B. Fu, H.B. Chen, M.L. Zhong, C.Y. Wang, ACS Appl. Mater. Interfaces 8 (2016) 1468-1477.
DOI URL |
| [40] |
T.Q. Hou, Z.R. Jia, B.B. Wang, H.B. Li, X.H. Liu, Q.G. Chi, G.L. Wu, Chem. Eng. J. 422 (2021) 130079.
DOI URL |
| [41] |
X. Li, C.Y. Wen, L.T. Yang, R.X. Zhang, Y.S. Li, R.C. Che, J. Alloy. Compd. 869 (2021) 159365.
DOI URL |
| [42] |
C.H. Sun, Z.R. Jia, S. Xu, D.Q. Hu, C.H. Zhang, G.L. Wu, J. Mater. Sci. Technol. 113 (2022) 128-137.
DOI URL |
| [43] | G.Z. Cui, L.B. Wang, L. Li, W. Xie, G.X. Gu, Prog. Nat. Sci.-Mater. 30 (2020) 343-351. |
| [44] |
X.J. Zhou, J.W. Wen, Z.N. Wang, X.H. Ma, H.J. Wu, J. Mater. Sci. Technol. 115 (2022) 148-155.
DOI URL |
| [45] |
X.L. Li, X.W. Yin, M.K. Han, C.Q. Song, H.L. Xu, Z.X. Hou, L.T. Zhang, L.F. Cheng, J. Mater. Chem. C 5 (2017) 4068-4074.
DOI URL |
| [46] |
D.Q. Zhang, H.H. Wang, J.Y. Cheng, C.Y. Han, X.Y. Yang, J.Y. Xu, G.C. Shan, G.P. Zheng, M.S. Cao, Appl. Surf. Sci. 528 (2020) 147052.
DOI URL |
| [47] |
B. Zhao, Y. Li, H.Y. Ji, P.W. Bai, S. Wang, B.B. Fan, X.Q. Guo, R. Zhang, Carbon 176 (2021) 411-420.
DOI URL |
| [48] |
B. Zhao, Y. Li, Q.W. Zeng, B.B. Fan, L. Wang, R. Zhang, R.C. Che, J. Mater. Sci. Technol. 107 (2022) 100-110.
DOI URL |
| [49] |
Y.Q. Wang, H.G. Wang, J.H. Ye, L.Y. Shi, X. Feng, Chem. Eng. J. 383 (2020) 123096.
DOI URL |
| [50] |
H.G. Shi, T. Wang, J.B. Cheng, H.B. Zhao, S.L. Li, Y.Z. Wang, J. Alloy. Compd. 863 (2021) 158090.
DOI URL |
| [51] | Y. Zhao, L.L. Hao, X.D. Zhang, S.J. Tan, H.H. Li, J. Zheng, G.B. Ji, Small. Sci. 2 (2021) 210 0 077. |
| [52] |
Z.W. Zhang, Z.H. Cai, Y. Zhang, Y.L. Peng, Z.Y. Wang, L. Xia, S.P. Ma, Z.Z. Yin, R.F. Wang, Y.S. Cao, Z. Li, Y. Huang, Carbon 174 (2021) 484-499.
DOI URL |
| [53] |
J.R. Yao, F. Yang, Z.J. Yao, L. Wan, J.S. Hou, Z.B. Jiao, W.J. Huyan, Y.R. He, P. Chen, J.T. Zhou, Adv. Electron. Mater. 7 (2021) 2100587.
DOI URL |
| [54] |
G.H. Fan, Y.L. Jiang, J.H. Xin, Z.D. Zhang, X.Y. Fu, P.T. Xie, C.B. Cheng, Y. Liu, Y.P. Qu, K. Sun, R.H. Fan, ACS Sustain. Chem. Eng. 7 (2019) 18765-18774.
DOI URL |
| [55] |
Z.G. Nie, Y. Feng, Q. Zhu, Y. Xia, L.P. Luo, L. Ma, J. Su, X.M. Hu, R.M. Wang, S.H. Qi, J. Mater. Sci. Technol. 113 (2022) 71-81.
DOI URL |
| [56] |
J. Feng, Y. Zong, Y. Sun, Y. Zhang, X. Yang, G.K. Long, Y. Wang, X.H. Li, X.L. Zheng, Chem. Eng. J. 345 (2018) 441-451.
DOI URL |
| [57] |
X. Zhang, F. Yan, S. Zhang, H.R. Yuan, C.L. Zhu, X.T. Zhang, Y.J. Chen, ACS Appl. Mater. Interfaces 10 (2018) 24920-24929.
DOI URL |
| [58] |
T. Xia, C. Zhang, N.A. Oyler, X.B. Chen, Adv. Mater. 25 (2013) 6905-6910.
DOI URL |
| [59] |
J.B. Cheng, H.B. Zhao, A.N. Zhang, Y.Q. Wang, Y.Z. Wang, J. Mater. Sci. Technol. 126 (2022) 266-274.
DOI URL |
| [1] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
| [2] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
| [3] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
| [4] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
| [5] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
| [6] | Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases [J]. J. Mater. Sci. Technol., 2022, 116(0): 11-21. |
| [7] | Fei Wu, Lingyun Wan, Ting Wang, Muhammad Rizwan Tariq, Tariq Shah, Pei Liu, Qiuyu Zhang, Baoliang Zhang. Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 117(0): 36-48. |
| [8] | Jie Wen, Zihao Song, Jiabao Ding, Feihong Wang, Hongpeng Li, Jinyong Xu, Chao Zhang. MXene-derived TiO2 nanosheets decorated with Ag nanoparticles for highly sensitive detection of ammonia at room temperature [J]. J. Mater. Sci. Technol., 2022, 114(0): 233-239. |
| [9] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
| [10] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
| [11] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
| [12] | Meng Zhu, Yuting Lei, Heng Wu, Luo Kong, Hailong Xu, Xuanxuan Yan, Yongjian Xu, Lei Dai. Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials [J]. J. Mater. Sci. Technol., 2022, 129(0): 215-222. |
| [13] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
| [14] | Zhenjiang Li, Hui Lin, Yuxin Xie, Laibin Zhao, Yuying Guo, Tingting Cheng, Hailong Ling, Alan Meng, Shaoxiang Li, Meng Zhang. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 124(0): 182-192. |
| [15] | Kangsen Peng, Chuyang Liu, Yuhan Wu, Gang Fang, Guoyue Xu, Yujing Zhang, Chen Wu, Mi Yan. Understanding the efficient microwave absorption for FeCo@ZnO flakes at elevated temperatures a combined experimental and theoretical approach [J]. J. Mater. Sci. Technol., 2022, 125(0): 212-221. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
