J. Mater. Sci. Technol. ›› 2022, Vol. 130: 136-156.DOI: 10.1016/j.jmst.2022.05.010
• Review Article • Previous Articles Next Articles
Long Xiaa,*(
), Yuming Fenga, Biao Zhaob,*(
)
Received:2022-04-15
Revised:2022-05-06
Accepted:2022-05-06
Published:2022-12-10
Online:2022-12-07
Contact:
Long Xia,Biao Zhao
About author:E-mail addresses: zhao_biao@fudan.edu.cn (B. Zhao)Long Xia, Yuming Feng, Biao Zhao. Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough[J]. J. Mater. Sci. Technol., 2022, 130: 136-156.
Fig. 3. (a) 3D plot of the relationship between p, ε', and ε''. (b) Relationship between ε' and ε''; (c) relationship between ε' and tanε; (d) relation between ε' and p and Δp [40]. Copyright 2022, Elsevier.
Fig. 4. (a) Cole-Cole model, (b) experimental setup, (c) circuit model from [41]. Copyright 2020, Wiley-VCH. (d) Nyquist plots for different types of impedance [50]. Copyright 2021, Wiley. (e) τ, (f) β factors, (g) RL curves, and (h) 2D images of RL value from [51]. Copyright 2019, Elsevier.
Fig. 5. (a) Multilayer impedance matching model. (b) Dielectric constant curve. (c) 3D view of the conical structure. (d) Electric field distribution in the designed structure from Ref. [70]. Copyright 2021, Elsevier. (e) Multi-segment ladder impedance honeycomb structure model [71]. Copyright 2020, IOP. (f) Impedance matching map for a dielectric absorber [73]. Copyright 2012, the Japan Society of Applied Physics.
Fig. 6. (a) Microwave absorption mechanism of c-CMF. (b) Electric field distribution of the CMF cross-section at 12 GHz. (c) RL curves at different Δε, (d) comparison of theoretical and experimental RL curves from Ref. [83]. Copyright 2020, Elsevier. (e) Time-averaged power flow of MCS6, (f) time-averaged power flow of MCS8 from Ref. [51]. Copyright 2019, Elsevier.
Fig. 7. (a, d) TEM images; (b, c, e, f) electron holograms of Ni@MXene hybrids. (g) Electromagnetic wave absorption mechanisms from Ref. [86]. Copyright 2019, American Chemical Society. (h) MnO model, (j) MnO@N-doped carbon model, (i) simulated electric field distribution, and (k) magnetic field distribution of MnO and MnO@N-doped carbon composites from Ref. [87]. Copyright 2020, Elsevier. (l) Experimental scheme of Bragg coherent diffraction imaging. Evolution of the spontaneous polarization distribution (m, n, o) at field E [88]. Copyright 2017, the Author(s). (p) SEM image of PM-rGO/ACMs/rGO. (q) Simulation model and (r) electric field distribution. (s) Complex permittivity and (t) RL curves from Ref. [82]. Copyright 2016, WILEY-VCH.
Fig. 8. (a) Schematic of stretchable and microwave-invisible pangolin-inspired meta scale (PIMS). Finite element analysis results in the absorbing performance of PIMS: (b) Electric intensity and PLD; (c) electric field along the x-axis and the intensity of the in-plane component of the PLD. (d) Normalized power loss; (e) simulation and experimental results [90]. Copyright 2021, Wiley-VCH.
Fig. 9. (a) Flexible multifunctional microsensor beyond electrical and optical energy. (b) Fitted temperature-response curve with r2 = 0.9992 and (c) r2 = 0.9996. (d) Frequency-dependence EMI shielding of the microsensor at different temperatures. (e-j) Characterization for polarization relaxation in nonperfect graphene. (k-p) Temperature-driven plasma resonance of nonperfect graphene patterns [97]. Copyright 2020, WILEY-VCH.
Fig. 10. First-principles calculations. (a) SnO and SnO2 crystal plane models used to calculate work functions and (b-e) work functions obtained by calculating typical crystal planes between samples’ interfaces from Ref. [103]. Copyright 2021, Elsevier. (f) Reduction of the energy barrier via a lattice-confined strategy [104]. Copyright 2020, American Chemical Society. The molecular dynamics simulations of IGPC at 20 and 50 °C. (g) Cluster analysis of hydrogen bond pairs within 0.35 nm; (h) radius of gyrate that indicates the structural deformation degree; (i) distance between C219 and C318 in an IGPC molecular; (j) conformation change of IGPC. (k) Wave absorption mechanisms of IGPC from Ref. [105]. Copyright 2021, Elsevier.
Fig. 11. (a) Simulated reflectivity spectra of designed arrays with different geometric parameters; (b) assumed relationship between tip configuration and input impedance matching/internal losses; (c) 3D power loss distribution of periodic modes from [110]. Copyright 2020, Springer Nature. (d, e) Digital photographs and (f) SEM images of GS with different shapes. (g-n) Complex electric field intensity time-averaged amplitude distribution and power loss distribution. (o) EM loss mechanisms from [115]. Copyright 2021, Wiley-VCH.
Fig. 12. (a-d) Far-field response based on the plane wave theory of Co@C/CGs. (e) EM field intensity distribution from Ref. [110]. Copyright 2021, Wiley-VCH. HFSS simulation results of the samples: (f) PEC, (g) PEC substrates covered with samples S-40, (i) S-50, and (j) S-60. (h) RCS simulated graphs; (k) RCS reduction compare with PEC from Ref. [117]. Copyright 2020, Elsevier. (l, m, o, p) Perfect conductive layer covered with G700, G800, and G900. (n) RCS simulated curves of PEC and all products under different scanning angles. (q) Comparison of RCS reduction values of G700/G800/G900. (r) MA mechanisms for 3D shaddock peel-derived carbon aerogel from Ref. [118]. Copyright 2021, the Author(s). Simulation of RCS of PEC substrate and PEC substrate with Fe@RC coating (s) at 6.00 GHz for 3.0 mm coating thickness; (t) at 10.00 GHz for 2.0 mm coating thickness; (u) at 14.08 GHz for 1.5 mm coating thickness from Ref. [119]. Copyright 2021, Elsevier. (v) HFSS simulation results of the MF composite coatings at different testing angles. (w) RCS reduction was obtained by subtracting the MF coating with PEC at representative scanning angles from Ref. [120]. Copyright 2021, American Chemical Society.
| Materials | Main mechanism | RLmin (dB) | Thickness (mm) | Bandwidth (GHz) | Refs. |
|---|---|---|---|---|---|
| Ni/graphene | Magnetic loss | -45.5 | 2.5 | 5.6 | [ |
| Fe doping LaCoO3 | Dielectric-magnetic loss | -41 | 1.95 | 5.61 | [ |
| CoSn/NC carbon | Multiple polarization | -48.2 | 2.2 | 5.84 | [ |
| MWCNT@TiO2-C | Polarization loss | -53.2 | 2.5 | 3.1 | [ |
| NiCo2O4/C | Interface polarization | -64 | 3.62 | 8.08 | [ |
| C-SnO2-MWCNT | Conduction loss | -53.5 | 2.65 | 3.16 | [ |
| NiCo/CeO2/Ti3C2Tx | Conduction loss | -42.28 | 1.9 | 6.32 | [ |
| GCraphene foam | Multiple reflection | -61.29 | 4.75 | 5.51 | [ |
| MnxOy@C | Multiple dielectric loss | -76.0 | 2.0 | 5.2 | [ |
| Spinel ferrites | Magnetic loss | -30.10 | 3.5 | 7.48 | [ |
| Ni2P/CF | Conductivity loss | -56.9 | 2.32 | 7.2 | [ |
| SnO2@MWCNT | Multiple reflections | -56.9 | 2.6 | 3.1 | [ |
| Carbon nanocoils /Fe3O4 or Ni | Dielectric-magnetic Multiple loss | -40.3 | 3.1 | - | [ |
| rGO/glass | Multi-polarization | -69.2 | 2.8 | 4.56 | [ |
| Transition metal carbides | Magnetic loss | -41.7 | 2.11 | 3.5 | [ |
| SCF/glass | Interface polarization | -40.5 | 6 | - | [ |
| CNT/CF | Conductivity loss | -44.46 | 3 | 7.44 | [ |
| C@magnetic metal | Dielectric-magnetic loss | -54.1 | 3.4 | 5.5 | [ |
| CoNi/C | Multiple reflections | -64 | - | 4.8 | [ |
Table 1. Comparison of MA properties and mechanisms based on MA materials in recent years
| Materials | Main mechanism | RLmin (dB) | Thickness (mm) | Bandwidth (GHz) | Refs. |
|---|---|---|---|---|---|
| Ni/graphene | Magnetic loss | -45.5 | 2.5 | 5.6 | [ |
| Fe doping LaCoO3 | Dielectric-magnetic loss | -41 | 1.95 | 5.61 | [ |
| CoSn/NC carbon | Multiple polarization | -48.2 | 2.2 | 5.84 | [ |
| MWCNT@TiO2-C | Polarization loss | -53.2 | 2.5 | 3.1 | [ |
| NiCo2O4/C | Interface polarization | -64 | 3.62 | 8.08 | [ |
| C-SnO2-MWCNT | Conduction loss | -53.5 | 2.65 | 3.16 | [ |
| NiCo/CeO2/Ti3C2Tx | Conduction loss | -42.28 | 1.9 | 6.32 | [ |
| GCraphene foam | Multiple reflection | -61.29 | 4.75 | 5.51 | [ |
| MnxOy@C | Multiple dielectric loss | -76.0 | 2.0 | 5.2 | [ |
| Spinel ferrites | Magnetic loss | -30.10 | 3.5 | 7.48 | [ |
| Ni2P/CF | Conductivity loss | -56.9 | 2.32 | 7.2 | [ |
| SnO2@MWCNT | Multiple reflections | -56.9 | 2.6 | 3.1 | [ |
| Carbon nanocoils /Fe3O4 or Ni | Dielectric-magnetic Multiple loss | -40.3 | 3.1 | - | [ |
| rGO/glass | Multi-polarization | -69.2 | 2.8 | 4.56 | [ |
| Transition metal carbides | Magnetic loss | -41.7 | 2.11 | 3.5 | [ |
| SCF/glass | Interface polarization | -40.5 | 6 | - | [ |
| CNT/CF | Conductivity loss | -44.46 | 3 | 7.44 | [ |
| C@magnetic metal | Dielectric-magnetic loss | -54.1 | 3.4 | 5.5 | [ |
| CoNi/C | Multiple reflections | -64 | - | 4.8 | [ |
| [1] |
B.L. Wang, Q. Wu, Y.G. Fu, T. Liu, J. Mater. Sci. Technol. 86 (2021) 91-109.
DOI URL |
| [2] |
X.F. Xu, G.Z. Wang, G.P. Wan, S.H. Shi, C.C. Hao, Y.L. Tang, G.L. Wang, Chem. Eng. J. 382 (2020) 122980.
DOI URL |
| [3] | Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem.-Int. Edit. 61 (2022) e202200705. |
| [4] |
C. Chen, S.F. Zeng, X.C. Han, Y.Q. Tan, W.L. Feng, H.H. Shen, S.M. Peng, H.B. Zhang, J. Mater. Sci. Technol. 54 (2020) 223-229.
DOI |
| [5] |
M.F. Zhou, G.P. Wan, P.P. Mou, S.J. Teng, S.W. Lin, G.Z. Wang, J. Mater. Chem. C 9 (2021) 869-880.
DOI URL |
| [6] |
W.Q. Zhang, Y.G. Xu, L.M. Yuan, J. Gai, D.Y. Zhang, J. Mater. Sci. Technol. 28 (2012) 913-919.
DOI URL |
| [7] |
T.T. Li, L. Xia, H. Yang, X.Y. Wang, T. Zhang, X.X. Huang, L. Xiong, C.L. Qin, G.W. Wen, ACS Appl. Mater. Interfaces 13 (2021) 11911-11919.
DOI URL |
| [8] |
J.J. Zhou, X.Y. Wang, K.Y. Ge, Z.Y. Yang, H.Q. Li, C.F. Guo, J.Y. Wang, Q. Shan, L. Xia, J. Colloid Interface Sci. 607 (2022) 881-889.
DOI URL |
| [9] |
J. Cui, X.H. Wang, L. Huang, C.W. Zhang, Y. Yuan, Y.B. Li, Carbon 187 (2022) 115-125.
DOI URL |
| [10] |
D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol. 70 (2010) 400-409.
DOI URL |
| [11] |
Y.L. Zhang, J.W. Gu, Nano-Micro Lett. 14 (2022) 89.
DOI PMID |
| [12] | Y.L. Zhang, Z.L. Ma, K.P. Ruan, J. Gu, Research 2022 (2022) 9780290. |
| [13] | P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, Nano-Micro Lett. 14 (2022) 51. |
| [14] | Y.Q. Guo, H. Qiu, K.P. Ruan, S.S. Wang, Y.L. Zhang, J.W. Gu, Compos. Sci. Tech-nol. 219 (2022) 109253. |
| [15] |
H. Zhao, J. Yun, Y.L. Zhang, K.P. Ruan, Y.S. Huang, Y.P. Zheng, L.X. Chen, J.W. Gu, ACS Appl. Mater. Interfaces 14 (2022) 3233-3243.
DOI URL |
| [16] | F.Q. Qi, L. Wang, Y.L. Zhang, Z.L. Ma, H. Qiu, J.W. Gu, Mater. Today Phys. 21 (2021) 100512. |
| [17] |
L. Wang, Z.L. Ma, Y.L. Zhang, H. Qiu, K.P. Ruan, J.W. Gu, Carbon Energy 4 (2022) 200-210.
DOI URL |
| [18] |
L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat 1 (2021) 413-431.
DOI URL |
| [19] |
A.D. Karisma, T. Hamaba, T. Fukasawa, A.N. Huang, T. Segawa, K. Fukui, Rev. Sci. Instrum. 88 (2017) 024101.
DOI URL |
| [20] |
H.S. Ren, T. Li, H.G. Wang, Z.H. Guo, T.L. Chen, F.B. Meng, Chem. Eng. J. 427 (2022) 131582.
DOI URL |
| [21] |
Y.Y. Shi, S.S. Li, Z.M. Tian, X.S. Yang, Y.B. Dong, Y.F. Zhu, Y.Q. Fu, J. Alloy. Compd. 892 (2022) 162194.
DOI URL |
| [22] |
Y. Sun, B. Zhou, H.P. Wang, X. Deng, J. Feng, M. He, X.H. Li, X.H. Zhu, Y. Peng, X.L. Zheng, Carbon 186 (2022) 333-343.
DOI URL |
| [23] |
X.Y. Zhang, L. Xia, B. Zhong, H. Yang, B. Shi, L.N. Huang, Y.N. Yang, X.X. Huang, J. Alloy. Compd. 799 (2019) 368-376.
DOI URL |
| [24] |
L.L. Liang, W.H. Gu, Y. Wu, B.S. Zhang, G.H. Wang, Y. Yang, G.B. Ji, Adv. Mater. 34 (2022) 2106195.
DOI URL |
| [25] |
F. Wang, W.H. Gu, J.B. Chen, Q.Q. Huang, M.Y. Han, G.H. Wang, G.B. Ji, J. Mater. Sci. Technol. 105 (2022) 92-100.
DOI |
| [26] |
B. Li, F.L. Wang, K.J. Wang, J. Qiao, D.M. Xu, Y.F. Yang, X. Zhang, L.F. Lyu, W. Liu, J.R. Liu, J. Mater. Sci. Technol. 104 (2022) 244-268.
DOI URL |
| [27] |
Z.H. Huang, J.Y. Cheng, H.B. Zhang, Y.F. Xiong, Z.X. Zhou, Q.B. Zheng, G.P. Zheng, D.Q. Zhang, M.S. Cao, J. Mater. Sci. Technol. 107 (2022) 155-164.
DOI URL |
| [28] |
V.N. Gorshenev, S.B. Bibikov, V.N. Spector, Synth. Met. 86 (1997) 2255-2256.
DOI URL |
| [29] | M.S. Cao, J. Zhu, J. Yuan, Z.H. Peng, G. Xiao, Microw. Opt. Technol. Lett. 34 (2002) 4 42-4 45. |
| [30] |
D.F. Zhang, C.A. Han, H.Y. Zhang, B. Zeng, Y. Zheng, J.Y. Shen, Q.B. Wu, G.X. Zeng, Nanomaterials 11 (2021) 1951.
DOI URL |
| [31] |
D.F. Zhang, Z.F. Hao, Y.N. Qian, Y.X. Huang, B. Zeng, Z.D. Yang, Q.B. Wu, Sci. Rep. 7 (2017) 479.
DOI URL |
| [32] |
W.L. Song, L.Z. Fan, Z.L. Hou, K.L. Zhang, Y. Ma, M.S. Cao, J. Mater. Chem. C 5 (2017) 2432-2441.
DOI URL |
| [33] |
C.H. Lan, X.W. Hu, M.H. Liu, Acta Phys. Sin. 60 (2011) 025205.
DOI URL |
| [34] |
L.W. Jiang, S.S. Yang, A.H. Wu, J.J. Liu, H.B. Chen, J. Electromagn. Waves Appl. 32 (2018) 624-634.
DOI URL |
| [35] |
M.Y. Han, M. Zhou, Y. Wu, Y. Zhao, J.M. Cao, S.L. Tang, Z.Q. Zou, G.B. Ji, J. Alloy. Compd. 902 (2022) 163792.
DOI URL |
| [36] |
Y.S. Huo, K. Zhao, M. Peng, F.P. Li, Z.X. Lu, Q.N. Meng, Y.F. Tang, J. Alloy. Compd. 891 (2022) 162006.
DOI URL |
| [37] |
Q. Hu, Y. Fang, Z.L. Guo, Z. Du, Z.Y. Liu, Y.D. Yu, X.Y. Tian, C.C. Tang, Carbon 186 (2022) 391-405.
DOI URL |
| [38] |
Y.R. Feng, K. Hu, M. Zhang, W. Ding, X.K. Kong, Z.G. Sheng, Q.C. Liu, J. Mater. Sci. 57 (2022) 204-216.
DOI URL |
| [39] |
L.Q. Yue, B. Zhong, L. Xia, T. Zhang, Y.L. Yu, X.X. Huang, J. Colloid Interface Sci. 582 (2021) 177-186.
DOI URL |
| [40] |
C. Wang, Y.M. Feng, J.J. Zhou, G.W. Wen, L. Xia, J. Colloid Interface Sci. 613 (2022) 256-264.
DOI URL |
| [41] |
M.W. Sifuna, M.R. Baidillah, A. Sapkota, M. Takei, Electroanalysis 32 (2020) 1121-1129.
DOI URL |
| [42] |
T. Zhang, J. Zhang, G.W. Wen, B. Zhong, L. Xia, X.X. Huang, H. Zhao, H.T. Wang, L.C. Qin, Carbon 136 (2018) 345-358.
DOI URL |
| [43] |
P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, Z.X. Guang, Chem. Eng. J. 368 (2019) 285-298.
DOI URL |
| [44] |
S.R. Lu, L. Xia, J.M. Xu, C.H. Ding, T.T. Li, H. Yang, B. Zhong, T. Zhang, L.N. Huang, L. Xiong, X.X. Huang, G.W. Wen, ACS Appl. Mater. Interfaces 11 (2019) 18626-18636.
DOI URL |
| [45] |
W.J. Xing, P. Li, H. Wang, Q. Lei, Y. Huang, J.L. Fan, G.L. Xu, J. Alloy. Compd. 750 (2018) 917-926.
DOI URL |
| [46] | K.S. Cole, R.H. Cole, Chem. Phys. 9 (1941) 341-351. |
| [47] |
A. Tarasov, K. Titov, Geophys. J. Int. 195 (2013) 352-356.
DOI URL |
| [48] |
D.W. Davidson, R.H. Cole, J. Chem. Phys. 19 (1951) 1484-1490.
DOI URL |
| [49] | P. Miskinis, Phys. Scr. T 136 (2009) 014019. |
| [50] |
S. Kapoulea, C. Psychalinos, A.S. Elwakil, Int. J. Circuit Theory Appl. 49 (2021) 1274-1284.
DOI URL |
| [51] |
X. Yan, X.X. Huang, Z. Bo, W. Tong, H.T. Wang, T. Zhang, N.M. Bai, G.P. Zhou, H. Pan, G.W. Wen, L. Xia, Chem. Eng. J. 391 (2020) 123538.
DOI URL |
| [52] |
J. de Jesús Rubio, IEEE Trans. Neural Netw. Learn. Syst. 32 (2021) 3510-3524.
DOI URL |
| [53] |
K.Y. Chan, T.S. Dillon, J. Singh, E. Chang, IEEE Trans. Intell. Transp. Syst. 13 (2012) 644-654.
DOI URL |
| [54] | Y. Chen, D.S. Oliver, Comput. Geosci. 17 (2013) 689-703. |
| [55] |
S. Havriliak, S. Negami, Polymer 8 (1967) 161-210.
DOI URL |
| [56] |
C. Grosse, J. Colloid Interface Sci. 419 (2014) 102-106.
DOI URL |
| [57] |
C. Grosse, J. Colloid Interface Sci. 600 (2021) 318-323.
DOI URL |
| [58] | K.J. Wang, G.D. Wang, Res. Phys. 20 (2021) 103666. |
| [59] |
M. Alibakhshikenari, B.S. Virdee, L. Azpilicueta, M. Naser-Moghadasi, M.O. Akinsolu, C.H. See, B. Liu, R.A. Abd-Alhameed, F. Falcone, I. Huynen, T.A. Denidni, E. Limiti, IEEE Access 8 (2020) 144778-144808.
DOI URL |
| [60] | A.R. Lopez, IEEE Antennas Propag. Mag. 54 (2012) 109-116. |
| [61] |
L.F. Wei, J.Z. Ma, L. Ma, C.X. Zhao, M.L. Xu, Q. Qi, W.B. Zhang, L. Zhang, X. He, C.B. Park, Small Methods 6 (2022) 2101510.
DOI URL |
| [62] |
Y.Y. Shi, L.J. Yu, K. Li, S.Z. Li, Y.B. Dong, Y.F. Zhu, Y.Q. Fu, F.B. Meng, Compos. Sci. Technol. 197 (2020) 108246.
DOI URL |
| [63] |
Z.J. Xu, M. He, Y.M. Zhou, M.Y. Zhang, S.J. Feng, Y.J. Wang, R. Xu, H. Peng, X. Chen, Chem. Eng. J. 428 (2022) 131127.
DOI URL |
| [64] |
T. Zhang, B. Xiao, P.Y. Zhou, L. Xia, G.W. Wen, H.B. Zhang, Nanotechnology 28 (2017) 355708.
DOI URL |
| [65] |
R.R. Cheng, Y. Wang, X.C. Di, Z. Lu, P. Wang, M.L. Ma, J.R. Ye, J. Colloid Interface Sci. 609 (2022) 224-234.
DOI URL |
| [66] |
T.G. Zhu, Y. Sun, Y.J. Wang, H.N. Xing, Y. Zong, Z.Y. Ren, H.P. Yu, X.L. Zheng, J. Mater. Sci. 56 (2021) 592-606.
DOI URL |
| [67] |
J. Lv, Y. Cheng, W. Liu, B. Quan, X.H. Liang, G.B. Ji, Y.W. Du, J. Mater. Chem. C 6 (2018) 1822-1828.
DOI URL |
| [68] |
D.R. Li, X.H. Liang, B. Quan, Y. Cheng, G.B. Ji, Y.W. Du, Mater. Res. Express 4 (2017) 035604.
DOI URL |
| [69] |
J.N. Ma, X.M. Zhang, W. Liu, G.B. Ji, J. Mater. Chem. C 4 (2016) 11419-11426.
DOI URL |
| [70] |
K.Z. Hao, J. Ma, J. Du, Y. Gao, Y. Zhang, Optik 251 (2022) 168445.
DOI URL |
| [71] |
F. He, Y. Zhao, K.X. Si, D.C. Zha, R. Li, J.X. Dong, S.W. Bie, J.J. Jiang, J. Phys. D-Appl. Phys. 54 (2021) 015501.
DOI URL |
| [72] |
Z.H. Wu, Z.Z. Meng, C. Yao, Y. Deng, G.L. Zhang, Y.B. Wang, Mater. Chem. Phys. 275 (2022) 125246.
DOI URL |
| [73] | Z.W. Peng, J.Y. Hwang, M. Andriese, Appl. Phys. Express 5 (2012) 3077301. |
| [74] |
Z. Ma, C.T. Cao, Q.F. Liu, J.B. Wang, Chin. Phys. Lett. 29 (2012) 38401.
DOI URL |
| [75] |
Y.M. Feng, C.Z. Du, D.X. Meng, W.S. Zhong, C.L. Qin, G.W. Wen, L. Xia, Ceram. Int. 48 (2022) 2717-2725.
DOI URL |
| [76] |
Y. Liu, Y. Liu, M.G.B. Drew, Phys. Scr. 96 (2021) 125003.
DOI URL |
| [77] |
Y. Liu, Y. Liu, M.G.B. Drew, Phys. Scr. 97 (2022) 015806.
DOI URL |
| [78] |
W. Li, X.Q. Chen, Z.L. Zhang, Z. Wu, L. Yang, Y.H. Zou, IEEE Trans. Antennas Propag. 70 (2022) 401-409.
DOI URL |
| [79] |
X.Q. Zuo, Y.P. Zhao, H. Zhang, H. Huang, C. Zhou, T.Z. Cong, J. Muham-mad, X. Yang, Y.F. Zhang, Z. Fan, L.J. Pan, J. Colloid Interface Sci. 608 (2022) 1894-1907.
DOI URL |
| [80] |
L.H. Wang, H.T. Guan, S.L. Su, J.Q. Hu, Y.D. Wang, J. Alloy. Compd. 903 (2022) 163894.
DOI URL |
| [81] |
R.D. Guo, D. Su, F. Chen, Y.Z. Cheng, X. Wang, R.Z. Gong, H. Luo, ACS Appl. Mater. Interfaces 14 (2022) 3084-3094.
DOI URL |
| [82] |
Y. Wang, Y.C. Du, R. Qiang, C.H. Tian, P. Xu, X.J. Han, Adv. Mater. Interfaces 3 (2016) 1500684.
DOI URL |
| [83] |
X. Yan, X.X. Huang, Y.T. Chen, Y.H. Liu, L. Xia, T. Zhang, H.Y. Lin, D.C. Jia, B. Zhong, G.W. Wen, Y. Zhou, Carbon 174 (2021) 662-672.
DOI URL |
| [84] |
S. Cerveny, P. Zinck, M. Terrier, S. Arrese-Igor, A. Alegria, J. Colmenero, Macro-molecules 41 (2008) 8669-8676.
DOI URL |
| [85] |
M. Smith, A.V. Andreev, B.Z. Spivak, Phys. Rev. B 101 (2020) 134508.
DOI URL |
| [86] |
L.Y. Liang, R.S. Yang, G.J. Han, Y.Z. Feng, B. Zhao, R. Zhang, Y.M. Wang, C.T. Liu, ACS Appl. Mater. Interfaces 12 (2020) 2644-2654.
DOI URL |
| [87] |
D.M. Xu, Y.F. Yang, L.F. Lyu, A.C. Ouyang, W. Liu, Z. Wang, L.L. Wu, F. Yang, J.R. Liu, F.L. Wang, Chem. Eng. J. 410 (2021) 128295.
DOI URL |
| [88] |
D. Karpov, Z. Liu, T.D. Rolo, R. Harder, P.V. Balachandran, D. Xue, T. Lookman, E. Fohtung, Nat. Commun. 8 (2017) 280.
DOI PMID |
| [89] | P.J. Bora, A.G. Anil, P.C. Ramamurthy, Y.H. Lee, Macromol. Rapid Commun. 42 (2021) 2000763. |
| [90] |
C. Wang, Z. Lv, M.P. Mohan, Z. Cui, Z. Liu, Y. Jiang, J. Li, C. Wang, S. Pan, M.F. Karim, A.Q. Liu, X. Chen, Adv. Mater. 33 (2021) 2102131.
DOI URL |
| [91] |
J.M. Xu, L. Xia, J.H. Luo, S.R. Lu, X.X. Huang, B. Zhong, T. Zhang, G.W. Wen, X. Wu, L. Xiong, G. Wang, ACS Appl. Mater. Interfaces 12 (2020) 20775-20784.
DOI URL |
| [92] |
J.Z. Li, Z.K. Xu, T. Li, D.D. Zhi, Y. Chen, Q.H. Lu, J.J. Wang, Q. Liu, F.B. Meng, Compos. Pt. B-Eng. 231 (2022) 109565.
DOI URL |
| [93] |
H.R. Cheng, Y.M. Pan, X. Wang, C.T. Liu, C.Y. Shen, D.W. Schubert, Z.H. Guo, X.H. Liu, Nano-Micro Lett. 14 (2022) 63 -63.
DOI URL |
| [94] |
G.S. Ma, L. Xia, H. Yang, X.Y. Wang, T. Zhang, X.X. Huang, L. Xiong, C.L. Qin, G.W. Wen, Chem. Eng. J. 418 (2021) 129429.
DOI URL |
| [95] |
H.B. Joshi, N.R. Babu, A. Gahlaut, R. Kumar, A.R. Tanna, Pramana-J. Phys. 96 (2021) 1.
DOI URL |
| [96] |
M. Zhang, M.S. Cao, J.C. Shu, W.Q. Cao, L. Li, J. Yuan, Mater. Sci. Eng. R-Rep. 145 (2021) 100627.
DOI URL |
| [97] |
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, J. Yuan, Adv. Mater. 32 (2020) 1907156.
DOI URL |
| [98] |
T.A. Khan, P.A. Burr, D. Payne, M. Juhl, U. Das, B. Hallam, D. Bagnall, B.P. Veet-til, J. Phys.-Condes. Matter 34 (2022) 195701.
DOI URL |
| [99] |
J. Li, T.T. Xu, H. Bai, Z.Y. Shen, Y.Y. Huang, W.W. Xing, Z.X. Zhou, Adv. Mater. Interfaces 9 (2022) 2101510.
DOI URL |
| [100] |
P.A. Yang, Y.X. Huang, R. Li, X. Huang, H.B. Ruan, M.J. Shou, W.J. Li, Y.X. Zhang, N. Li, L.C. Dong, Chem. Eng. J. 430 (2022) 132878.
DOI URL |
| [101] |
J. Li, Y. Hong, S. He, W.K. Li, H. Bai, Y.H. Xia, G.A. Sun, Z.X. Zhou, J. Adv. Ceram. 11 (2022) 263-272.
DOI URL |
| [102] |
Q. Cao, J. Zhang, H.B. Zhang, J.Z. Xu, R.C. Che, J. Adv. Ceram. 11 (2022) 504-514.
DOI URL |
| [103] |
H.P. Lv, C. Wu, J. Tang, H.F. Du, F.X. Qin, H.X. Peng, M. Yan, Chem. Eng. J. 411 (2021) 128445.
DOI URL |
| [104] |
L.F. Que, F.D. Yu, Y. Xia, L. Deng, K. Goh, C. Liu, Y.S. Jiang, X.L. Sui, Z.B. Wang, ACS Nano 14 (2020) 13765-13774.
DOI URL |
| [105] |
Y. Li, D. Gao, Y.F. Guo, W. Wei, Y. Wang, H.N. Jiang, F.X. Peng, F.B. Meng, Z.W. Zhou, Chem. Eng. J. 427 (2022) 131746.
DOI URL |
| [106] |
L.Y. Chu, Y. Li, J.H. Zhu, W.M. Chen, Angew. Chem.-Int. Edit. 44 (2005) 2124-2127.
DOI URL |
| [107] |
D. Mukherji, K. Kremer, Macromolecules 46 (2013) 9158-9163.
DOI URL |
| [108] |
X.B. Xie, B.L. Wang, Y.K. Wang, C. Ni, X.Q. Sun, W. Du, Chem. Eng. J. 428 (2022) 131160.
DOI URL |
| [109] |
J. Xu, X. Zhang, Z.B. Zhao, H. Hu, B. Li, C.L. Zhu, X.T. Zhang, Y.J. Chen, Small 17 (2021) 2102032.
DOI URL |
| [110] |
B. Quan, W.H. Gu, J.Q. Sheng, X.F. Lv, Y.Y. Mao, L. Liu, X.G. Huang, Z.J. Tian, G.B. Ji, Nano Res 14 (2021) 1495-1501.
DOI URL |
| [111] |
J.W. Xue, C.Y. Wu, X.M. Du, W.H. Ma, K. Wen, S.L. Huang, Y.N. Liu, Y.Q. Liu, G.Z. Zhao, Mater. Res. Express 7 (2020) 045303.
DOI URL |
| [112] | R. Zhang, X.X. Huang, B. Zhong, L. Xia, G.W. Wen, Y. Zhou, RCS Adv. 6 (2016) 16952-16962. |
| [113] |
T.T. Li, L. Xia, T. Zhang, B. Zhong, J. Dai, X. Tian, X.X. Huang, G. Wen, Front. Mater. 7 (2020) 108.
DOI URL |
| [114] |
S.S. Li, X.W. Tang, Y.W. Zhang, Q.Q. Lan, Z.W. Hu, L. Li, N. Zhang, P.M. Ma, W.F. Dong, W. Tjiu, Z.C. Wang, T.X. Liu, ACS Appl. Mater. Interfaces 14 (2022) 8297-8310.
DOI URL |
| [115] | X.X. Sun, Y.B. Li, Y.X. Huang, Y.J. Cheng, S.S. Wang, W.L. Yin, Adv. Adv. Funct. Mater. 32 (2022) 2107508. |
| [116] | N. Lee, J.S. Lim, I. Chang, H.M. Bae, J. Nam, H.H. Cho, Adv. Opt. Mater. (2022) 2200448. |
| [117] |
J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, G.B. Ji, Carbon 174 (2021) 509- 517.
DOI URL |
| [118] | W.H. Gu, J.Q. Sheng, Q.Q. Huang, G.H. Wang, J.B. Chen, G.B. Ji, Nano-Micro Lett. 13 (2021) 14102. |
| [119] |
S.T. Gao, L.W. Chen, Y.C. Zhang, J.F. Shan, Compos. Sci. Technol. 213 (2021) 108921.
DOI URL |
| [120] |
J.B. Chen, J. Zheng, Q.Q. Huang, F. Wang, G.B. Ji, ACS Appl. Mater. Interfaces 13 (2021) 36182-36189.
DOI URL |
| [121] |
C.X. Wang, Z.R. Jia, S.Q. He, J.X. Zhou, S. Zhang, M.L. Tian, B.B. Wang, G.L. Wu, J. Mater. Sci. Technol. 108 (2022) 236-243.
DOI URL |
| [122] |
J. Zhao, J.L. Zhang, L. Wang, S.S. Lyu, W.L. Ye, B.B. Xu, H. Qiu, L.X. Chen, J.W. Gu, Compos. Pt. A-Appl. Sci. Manuf. 129 (2020) 105714.
DOI URL |
| [123] |
G.Y. Qin, X.X. Huang, X. Yan, Y.F. He, Y.H. Liu, L. Xia, B. Zhong, J. Adv. Ceram. 11 (2022) 105-119.
DOI URL |
| [124] |
J. Zhao, Y.J. Lu, W.L. Ye, L. Wang, B. Liu, S.S. Lv, L.X. Chen, J.W. Gu, Ceram. Int. 45 (2019) 20282-20289.
DOI |
| [125] |
C.H. Sun, Z.R. Jia, S. Xu, D.Q. Hu, C.H. Zhang, G.L. Wu, J. Mater. Sci. Technol. 113 (2022) 128-137.
DOI URL |
| [126] |
Y.W. Zhang, S.S. Li, X.W. Tang, W. Fan, Q.Q. Lan, L. Li, P.M. Ma, W.F. Dong, Z.C. Wang, T.X. Liu, J. Mater. Sci. Technol. 102 (2022) 97-104.
DOI URL |
| [127] |
Y. Liu, X.H. Liu, X.Y. E, B.B. Wang, Z.R. Jia, Q.G. Chi, G.L. Wu, J. Mater. Sci. Technol. 103 (2022) 157-164.
DOI URL |
| [128] |
J.B. Ma, B. Zhao, H.M. Xiang, F.Z. Dai, Y. Liu, R. Zhang, Y.C. Zhou, J. Adv. Ceram. 11 (2022) 754-768.
DOI URL |
| [129] |
F. Pan, L. Cai, Y.Y. Dong, X.J. Zhu, Y.Y. Shi, W. Lu, J. Mater. Sci. Technol. 101 (2022) 85-94.
DOI URL |
| [130] |
J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
| [131] |
G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao, S.W. Lin, Y.H. Feng, L. Zhou, Y. Qin, ACS Nano 6 (2012) 11009-11017.
DOI URL |
| [132] |
Y.M. Feng, L. Xia, C.H. Ding, H. Yang, G.R. Xu, T. Zhang, L. Xiong, C.L. Qin, G.W. Wen, J. Colloid Interface Sci. 593 (2021) 96- 104.
DOI URL |
| [133] |
W.M. Zhang, H.M. Xiang, F.Z. Dai, B. Zhao, S.J. Wu, Y.C. Zhou, J. Adv. Ceram. 11 (2022) 545-555.
DOI URL |
| [134] |
Y.M. Feng, T.T. Li, K.Y. Ge, X.Y. Wang, G.W. Wen, J.R. Ye, L. Xia, Mater. Res. Bull. 153 (2022) 111872.
DOI URL |
| [135] |
Y.F. Zhan, L. Xia, H. Yang, N. Zhou, G.S. Ma, T. Zhang, X.X. Huang, L. Xiong, C.L. Qin, G.W. Wen, Carbon 175 (2021) 101-111.
DOI URL |
| [136] |
B. Zhao, Y. Li, Q.W. Zeng, B.B. Fan, L. Wang, R.C. Zhang, R. Che, J. Mater. Sci. Technol. 107 (2022) 100-110.
DOI URL |
| [137] |
J.W. Ge, Y. Cui, J.X. Qian, L. Liu, F.D. Meng, F.H. Wang, J. Mater. Sci. Technol. 102 (2022) 24-35.
DOI URL |
| [1] | Zhang Jingjing, Qi Xiaosi, Gong Xiu, Peng Qiong, Chen Yanli, Xie Ren, Zhong Wei. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption [J]. J. Mater. Sci. Technol., 2022, 128(0): 59-70. |
| [2] | Jin-Bo Cheng, Hai-Bo Zhao, Ai-Ning Zhang, Yan-Qin Wang, Yu-Zhong Wang. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 126(0): 266-274. |
| [3] | Zirui Jia, Mingyue Kong, Bowen Yu, Yingzhuo Ma, Jiaying Pan, Guanglei Wu. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 127(0): 153-163. |
| [4] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
| [5] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
| [6] | Meng Zhu, Yuting Lei, Heng Wu, Luo Kong, Hailong Xu, Xuanxuan Yan, Yongjian Xu, Lei Dai. Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials [J]. J. Mater. Sci. Technol., 2022, 129(0): 215-222. |
| [7] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
| [8] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
| [9] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
| [10] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
| [11] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
| [12] | Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases [J]. J. Mater. Sci. Technol., 2022, 116(0): 11-21. |
| [13] | Fei Wu, Lingyun Wan, Ting Wang, Muhammad Rizwan Tariq, Tariq Shah, Pei Liu, Qiuyu Zhang, Baoliang Zhang. Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 117(0): 36-48. |
| [14] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
| [15] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
