J. Mater. Sci. Technol. ›› 2022, Vol. 127: 108-114.DOI: 10.1016/j.jmst.2022.02.054
• Research Article • Previous Articles Next Articles
Lu Yua, Zipei Zhanga, Juan Lia, Wenhao Lia, Shikai Weia, Sitong Weia, Guiwu Lub, Weiyu Songb, Shuqi Zhenga,*()
Received:
2021-11-05
Revised:
2021-12-13
Accepted:
2022-02-18
Published:
2022-11-10
Online:
2022-11-10
Contact:
Shuqi Zheng
About author:
* E-mail address: zhengsq09@163.com (S. Zheng)Lu Yu, Zipei Zhang, Juan Li, Wenhao Li, Shikai Wei, Sitong Wei, Guiwu Lu, Weiyu Song, Shuqi Zheng. Enhanced thermoelectric performance in n-type Mg3.2Sb1.5Bi0.5 doping with lanthanides at the Mg site[J]. J. Mater. Sci. Technol., 2022, 127: 108-114.
Fig. 2. (a) XRD pattern of n-type Mg3.2GdxSb1.5Bi0.5 (x = 0.01, 0.02, 0.03, and 0.04), and (b) XRD pattern of n-type Mg3.2HoxSb1.5Bi0.5 (x = 0.01, 0.02, 0.03, and 0.04).
Fig. 3. (a) SEM image of the fractured cross section of n-type Mg3.2Gd0.02Sb1.5Bi0.5 sample and (b-f) SEM-EDS images of the polished surface of n-type Mg3.2Gd0.02Sb1.5Bi0.5 sample.
Fig. 4. (a) SEM image of the fractured cross section of n-type Mg3.2Ho0.02Sb1.5Bi0.5 sample and (b-f) SEM-EDS images of the polished surface of n-type Mg3.2Ho0.02Sb1.5Bi0.5 sample.
Fig. 5. Temperature dependence of n-type Mg3.2GdxSb1.5Bi0.5 (x = 0.01, 0.02, 0.03, and 0.04) samples: (a) Seebeck coefficient, (b) conductivity, and (c) power factor.
Fig. 6. Temperature dependence of (a) total thermal conductivity, (b) lattice thermal conductivity, (c) electrical thermal conductivity, and (d) figure of merit zT of n-type Mg3.2GdxSb1.5Bi0.5(x = 0.01, 0.02, 0.03, and 0.04) samples.
Fig. 7. Temperature dependence of n-type Mg3.2HoxSb1.5Bi0.5 (x = 0.01, 0.02, 0.03, and 0.04) samples: (a) Seebeck coefficient, (b) conductivity, and (c) power factor.
Fig. 8. Temperature dependence of (a) total thermal conductivity, (b) lattice thermal conductivity, (c) electrical thermal conductivity, and (d) figure of merit zT of n-type Mg3.2HoxSb1.5Bi0.5 (x = 0.01, 0.02, 0.03, and 0.04) samples.
Fig. 9. (a) The relationship between the carrier concentration of Mg3Sb2-based compounds and the doping content of Gd, Ho, S, Se, and Te at 300 K [19,30,31], and (b) the maximum zT values comparison of n-type Mg3.2Ho0.02Sb1.5Bi0.5, Mg3.2Gd0.02Sb1.5Bi0.5 and other Mg3Sb2-based thermoelectric materials [32, 33, 34].
[1] |
L.E. Bell, Science 321 (2008) 1457-1461.
DOI URL |
[2] |
P. Gorai, A. Goyal, E.S. Toberer, V. Stevanovi ´ c, J. Mater. Chem. A 7 (2019) 19385-19395.
DOI URL |
[3] | J. He, T.M. Tritt, Science 357 (2017) 9997. |
[4] | M.V. Vedernikov, E.K. Iordanishvili, IEEE Netw. Lett. 194021 (1998) 37-42. |
[5] | J. Shuai, Y. Sun, X. Tan, T. Mori, Small 16 (2020) e1906921. |
[6] |
Z.P. Zhang, Y. Gao, Y. Wu, B.Y. Wang, W.L. Sun, L. Yu, S.T. Wei, S.Q. Zheng, Chem. Eng. J. 427 (2022) 131807.
DOI URL |
[7] | W. Zhao, F. Zhang, X. Dai, W. Jin, L. Xiang, J. Ding, X. Wang, Y. Wan, H. Shen, Z. He, J. Wang, X. Gao, Y. Zou, C.A. Di, D. Zhu, Adv. Mater. 32 (2020) e2000273. |
[8] |
D.V. Maheswar Repaka, R. Mahendiran, Appl. Phys. Lett. 103 (2013) 162408.
DOI URL |
[9] |
S. Yue, H. Cheng, H. He, X. Guan, Q. Le, X. Shu, S. Shi, J. Chen, J. Ouyang, J. Mater. Chem. A 9 (2021) 16725-16732.
DOI URL |
[10] |
S. Liu, Y. Yu, D. Wu, X. Xu, L. Xie, X. Chao, M. Bosman, S.J. Pennycook, Z. Yang, J. He, Adv. Funct. Mater. 31 (2020) 2007340.
DOI URL |
[11] | R. He, T. Zhu, P. Ying, J. Chen, L. Giebeler, U. Kuhn, J.C. Grossman, Y. Wang, K. Nielsch, Small 17 (2021) e2102045. |
[12] |
A. Bhardwaj, D.K. Misra, RSC Adv. 4 (2014) 34552-34560.
DOI URL |
[13] |
X. Chen, H. Wu, J. Cui, Y. Xiao, Y. Zhang, J. He, Y. Chen, J. Cao, W. Cai, S.J. Pennycook, Z. Liu, L.D. Zhao, J. Sui, Nano Energy 52 (2018) 246-255.
DOI URL |
[14] |
C.L. Condron, S.M. Kauzlarich, F. Gascoin, G.J. Snyder, J. Solid State Chem. 179 (2006) 2252-2257.
DOI URL |
[15] |
J. Shuai, Y. Wang, H.S. Kim, Z. Liu, J. Sun, S. Chen, J. Sui, Z. Ren, Acta Mater. 93 (2015) 187-193.
DOI URL |
[16] |
X. Chen, J. Zhu, D. Qin, N. Qu, W. Xue, Y. Wang, Q. Zhang, W. Cai, F. Guo, J. Sui, Sci. China Mater. 64 (2021) 1761-1769.
DOI URL |
[17] |
T. Kanno, H. Tamaki, M. Yoshiya, H. Uchiyama, S. Maki, M. Takata, Y. Miyazaki, Adv. Funct. Mater. 31 (2021) 2008469.
DOI URL |
[18] | F. Zhang, C. Chen, H. Yao, F. Bai, L. Yin, X. Li, S. Li, W. Xue, Y. Wang, F. Cao, X. Liu, J. Sui, Q. Zhang, Adv. Funct. Mater. 30 (2019) 1906043. |
[19] | J. Zhang, L. Song, B.B. Iversen, npj Comput. Mater. 5 (2019) 6864. |
[20] |
J. Zhang, L. Song, A. Mamakhel, M.R.V. Jørgensen, B.B. Iversen, Chem. Mater. 29 (2017) 5371-5383.
DOI URL |
[21] |
J. Zhang, L. Song, S.H. Pedersen, H. Yin, L.T. Hung, B.B. Iversen, Nat. Commun. 8 (2017) 13901.
DOI URL |
[22] |
P. Gorai, B.R. Ortiz, E.S. Toberer, V. Stevanović, J. Mater. Chem. A 6 (2018) 13806-13815.
DOI URL |
[23] |
J. Li, F. Jia, S. Zhang, S. Zheng, B. Wang, L. Chen, G. Lu, D.L. Wu, J. Mater. Chem. A 7 (2019) 19316-19323.
DOI URL |
[24] | J. Li, S. Zhang, F. Jia, S. Zheng, X. Shi, D. Jiang, S. Wang, G. Lu, L. Wu, Z.G. Chen, Mater. Today Phys. 15 (2020) 100269. |
[25] |
J. Li, S. Zhang, B.Y. Wang, S.C. Liu, L. Yue, G.W. Lu, S.Q. Zheng, J. Mater. Chem. A 6 (2018) 20454-20462.
DOI URL |
[26] |
J. Li, S.Q. Zheng, T. Fang, L. Yue, S. Zhang, G.W. Lu, Phys. Chem. Chem. Phys. 20 (2018) 7686-7693.
DOI URL |
[27] |
G.D. Mahan, M. Bartkowiak, Appl. Phys. Lett. 74 (1999) 953-954.
DOI URL |
[28] |
L.D. Zhao, S.H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 133 (2011) 20476-20487.
DOI PMID |
[29] |
Y.X. Wu, Z.W. Chen, P.F. Nan, X. Fen, S.Q. Lin, X.Y. Zhang, Y. Chen, L.D. Chen, B.H. Ge, Y.Z. Pei, Joule 3 (2019) 1276-1288.
DOI URL |
[30] |
J. Zhang, L. Song, K.A. Borup, M.R.V. Jørgensen, B.B. Iversen, Adv. Energy Mater. 8 (2018) 1702776.
DOI URL |
[31] |
Q. Zhu, S. Song, H. Zhu, Z. Ren, J. Power Sources 414 (2019) 393-400.
DOI URL |
[32] |
K. Imasato, S. Ohno, S.D. Kang, G.J. Snyder, APL Mater. 6 (2018) 016106.
DOI URL |
[33] |
J. Zhang, L. Song, K.A. Borup, M.R.V. Jørgensen, B.B. Iversen, Adv. Energy Mater. 8 (2018) 1702776.
DOI URL |
[34] | J. Zhang, L. Song, B.B. Iversen, ACS Appl. Mater.Interfaces 13 (2021) 10964-10971. |
[1] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[2] | Daxian Zuo, Cuiping Wang, Jiajia Han, Qinghao Han, Yanan Hu, Junwei Wu, Huajun Qiu, Qian Zhang, Xingjun Liu. One-step synthesis of novel core-shell bimetallic hexacyanoferrate for high performance sodium-storage cathode [J]. J. Mater. Sci. Technol., 2022, 114(0): 180-190. |
[3] | Qing Wang, Zhiliang Li, Xiaofeng Yang, Xin Qian, Linjuan Guo, Jianglong Wang, Dan Zhang, Shu-Fang Wang. Improving electrical and thermal properties synchronously via introducing CsPbBr3 QDs into higher manganese silicides [J]. J. Mater. Sci. Technol., 2022, 111(0): 279-286. |
[4] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[5] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[6] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[7] | H.L. Zhang, D.D. Cai, X. Sun, H. Huang, S. Lu, Y.Z. Wang, Q.M. Hu, L. Vitos, X.D. Ding. Solid solution strengthening of high-entropy alloys from first-principles study [J]. J. Mater. Sci. Technol., 2022, 121(0): 105-116. |
[8] | Ze Zhang, Shizhen Zhu, Fu-Zhi Dai, Huimin Xiang, Yanbo Liu, Ling Liu, Zhuang Ma, Shijiang Wu, Fei Liu, Kuang Sun, Yanchun Zhou. Theoretical predictions and experimental verification on the phase stability of enthalpy-stabilized HE TMREB2s [J]. J. Mater. Sci. Technol., 2022, 121(0): 154-162. |
[9] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[10] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
[11] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[12] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[13] | Fang Bian, XinGe Wu, ShanShan Li, GaoWu Qin, XiangYing Meng, Yin Wang, HongWei Yang. Role of transport polarization in electrocatalysis: A case study of the Ni-cluster/Graphene interface [J]. J. Mater. Sci. Technol., 2021, 92(0): 120-128. |
[14] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[15] | Bin Liu, Juanli Zhao, Yuchen Liu, Jianqi Xi, Qian Li, Huimin Xiang, Yanchun Zhou. Application of high-throughput first-principles calculations in ceramic innovation [J]. J. Mater. Sci. Technol., 2021, 88(0): 143-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||