J. Mater. Sci. Technol. ›› 2022, Vol. 126: 252-265.DOI: 10.1016/j.jmst.2022.02.049
Special Issue: Films and coatings 2022; Mg-based alloys 2022
• Research Article • Previous Articles Next Articles
Yue Liu, Feng Peng, Guang-Ling Yang, Zhi-Hui Xiea,*(
), Wenxin Daic, Yuejun Ouyangd, Liang Wue, Chuan-Jian Zhongf,*(
)
Accepted:2022-04-21
Published:2022-11-01
Online:2022-11-10
Contact:
Zhi-Hui Xie,Chuan-Jian Zhong
About author:cjzhong@binghamton.edu (C.-J. Zhong).Yue Liu, Feng Peng, Guang-Ling Yang, Zhi-Hui Xie, Wenxin Dai, Yuejun Ouyang, Liang Wu, Chuan-Jian Zhong. Coupling a titanium dioxide based heterostructure photoanode with electroless-deposited nickel-phosphorus alloy coating on magnesium alloy for enhanced corrosion protection[J]. J. Mater. Sci. Technol., 2022, 126: 252-265.
Fig. 2. SEM and TEM images, and EDS spectra of the fabricated semiconductors. The surface morphologies of (a) TiO2 and (b) TiO2/TpBD photoanodes, and (d) TpBD powder. (c) TEM image of single TiO2 nanotube after deposition of TpBD semiconductor. (e) and (f) the corresponding EDS spectra of the square areas (pink dashed squares) in (a) and (b), respectively. Inset at the bottom left corner in (a) is the cross-sectional SEM image of TiO2 nanotubes. Insets at the top right corner in (a), (b), and (d) are the digital pictures of the corresponding samples.
| Empty Cell | Ti | O | C | N |
|---|---|---|---|---|
| TiO2 | 34.04 | 65.96 | NA | NA |
| TiO2/TpBD-1 | 15.19 | 35.85 | 48.96 | 0 |
| TiO2/TpBD-2 | NA | 33.35 | 53.16 | 13.49 |
Table 1. Chemical compositions of the TiO2 and TiO2/TpBD based on EDS spectra (at.%).
| Empty Cell | Ti | O | C | N |
|---|---|---|---|---|
| TiO2 | 34.04 | 65.96 | NA | NA |
| TiO2/TpBD-1 | 15.19 | 35.85 | 48.96 | 0 |
| TiO2/TpBD-2 | NA | 33.35 | 53.16 | 13.49 |
Fig. 3. (a) HRTEM image and (b) corresponding SAED pattern of TiO2/TpBD. (c)-(e) Magnified lattice fringe images of the areas marked with square ①, ②, and ③ in (a), respectively.
Fig. 4. (a) Powder XRD pattern of the TpBD powder. Inset at the upper right corner is the small-angle XRD pattern of the corresponding sample. (b) FTIR spectra of the TiO2, TpBD, and TiO2/TpBD.
Fig. 6. Photoelectrochemical performance of the TiO2, TpBD, and TiO2/TpBD photoelectrodes. (a) UV-vis spectra and (b) plots of (αhv)2 versus hv for the TiO2 and TpBD photoelectrodes. (c) Mott-Schottky curves of the TiO2. (d) VB XPS spectrum of TpBD powder. (e) Mott-Schottky curve of the TiO2/TpBD. (f) The photoinduced variation of the current density over potential (j - E) curves under periodically switching on and off the visible light in 0.1 mol L−1 Na2SO4 solutions. (g) Enlarged j - E curve for the pure TiO2 photoelectrode. (h) Nyquist diagram and corresponding EC model for pure TiO2 and TiO2/TpBD photoelectrodes in solutions containing 0.1 mol L−1 Na2S and 0.2 mol L−1 NaOH.
| Samples | Rs/Ω cm2 | CPE1/S sn cm−2 | R1/Ω cm2 | CPEdl/S sn cm−2 | Rct/Ω cm2 | χ2 |
|---|---|---|---|---|---|---|
| TiO2 | 3.10 | 6.64 × 10−4 | 4.75 × 102 | 1.22 × 10−4 | 6.38 × 103 | 2.53 × 10−4 |
| TiO2/TpBD | 2.87 | 1.74 × 10−2 | 1.8 | 1.29 × 10−3 | 885 | 2.84 × 10−3 |
Table 2. The fitted electrochemical parameters based on EIS data of TiO2 and TiO2/TpBD photoanodes under visible light.
| Samples | Rs/Ω cm2 | CPE1/S sn cm−2 | R1/Ω cm2 | CPEdl/S sn cm−2 | Rct/Ω cm2 | χ2 |
|---|---|---|---|---|---|---|
| TiO2 | 3.10 | 6.64 × 10−4 | 4.75 × 102 | 1.22 × 10−4 | 6.38 × 103 | 2.53 × 10−4 |
| TiO2/TpBD | 2.87 | 1.74 × 10−2 | 1.8 | 1.29 × 10−3 | 885 | 2.84 × 10−3 |
Fig. 7. Time-dependent profiles of the photoinduced (a) current densities and (b) OCP of the uncoupled Mg/Ni electrode and the Mg/Ni working electrode coupled with TiO2/TpBD photoanode or TiO2 photoanode under intermittent visible light illumination (λ > 420 nm). (c) The long-term time-dependent OCP response of the Mg/Ni electrode coupled with TiO2/TpBD photoanode under visible light irradiation. (d) OCP - t curve of the Mg/Ni electrode (electroless Ni plating time is purposefully decreased to 20 min) with and without coupling with TiO2/TpBD photoanode under visible light irradiation. The insets in (d) are the digital photos of the Mg/Ni electrodes (①) uncoupled with photoanode after 108 min of exposure to NaCl solutions, and coupled with photoanode after (②) 108 min and (③) 150 min of exposure to NaCl solutions.
Fig. 8. EIS of the Mg/Ni electrode with and without coupling with TiO2/TpBD photoanode in a 3.5 wt.% NaCl solution under dark state and visible light irradiation. (a) Nyquist diagram with an inset showing the EC diagram for fitting. (b) An enlarged view of the orange rectangle area in (a). Bode diagrams of (c) modulus versus frequency and (d) phase versus frequency.
| Samples | Rs/Ω cm2 | CPE1/S sn cm−2 | R1/Ω cm2 | CPEdl/S sn cm−2 | Rct/Ω cm2 | χ2 |
|---|---|---|---|---|---|---|
| Mg/Ni | 4.90 | 4.83 × 10−5 | 1.20 × 103 | 2.53 × 10−7 | 2.15 × 104 | 1.95 × 10−4 |
| Mg/Ni- TiO2/TpBD-dark | 7.52 | 2.26 × 10−5 | 1.15 × 103 | 2.26 × 10−3 | 2.81 × 103 | 8.52 × 10−5 |
| Mg/Ni- TiO2/TpBD-light | 5.62 | 9.90 × 10−5 | 1.19 × 103 | 3.87 × 10−2 | 171.80 | 2.08 × 10−5 |
Table 3. Fitted EIS parameters for the Mg/Ni electrodes under different conditions in the NaCl solutions.
| Samples | Rs/Ω cm2 | CPE1/S sn cm−2 | R1/Ω cm2 | CPEdl/S sn cm−2 | Rct/Ω cm2 | χ2 |
|---|---|---|---|---|---|---|
| Mg/Ni | 4.90 | 4.83 × 10−5 | 1.20 × 103 | 2.53 × 10−7 | 2.15 × 104 | 1.95 × 10−4 |
| Mg/Ni- TiO2/TpBD-dark | 7.52 | 2.26 × 10−5 | 1.15 × 103 | 2.26 × 10−3 | 2.81 × 103 | 8.52 × 10−5 |
| Mg/Ni- TiO2/TpBD-light | 5.62 | 9.90 × 10−5 | 1.19 × 103 | 3.87 × 10−2 | 171.80 | 2.08 × 10−5 |
Fig. 9. (a) Potentiodynamic polarization curves of the Mg alloy, single Mg/Ni electrode, and Mg/Ni electrodes coupled with TiO2/TpBD photoanode in 3.5 wt.% NaCl corrosive mediums in the dark and under visible light illumination. (b) The corresponding Ecorr and jcorr for the samples under different conditions based on the polarization curves.
| Samples | Ecorr/ V (vs. SCE) | jcorr/ μA cm−2 | βc/ mV dec−1 |
|---|---|---|---|
| Mg | −1.50 ± 0.038 | 7.08 ± 1.14 | −490 |
| Mg/Ni | −0.33 ± 0.015 | 3.43 ± 0.75 | −347 |
| Mg/Ni-TiO2/TpBD-dark | −0.84 ± 0.038 | 16.4 ± 1.05 | −197 |
| Mg/Ni-TiO2/TpBD-light | −1.12 ± 0.049 | 69.6 ± 1.72 | −190 |
Table 4. Electrochemical parameters based on the potentiodynamic polarization curves.
| Samples | Ecorr/ V (vs. SCE) | jcorr/ μA cm−2 | βc/ mV dec−1 |
|---|---|---|---|
| Mg | −1.50 ± 0.038 | 7.08 ± 1.14 | −490 |
| Mg/Ni | −0.33 ± 0.015 | 3.43 ± 0.75 | −347 |
| Mg/Ni-TiO2/TpBD-dark | −0.84 ± 0.038 | 16.4 ± 1.05 | −197 |
| Mg/Ni-TiO2/TpBD-light | −1.12 ± 0.049 | 69.6 ± 1.72 | −190 |
Fig. 11. ESR spectra of pure TiO2, TpBD, and TiO2/TpBD composite semiconductors for (a) DMPO-·OH in water and (b) DMPO-·O2− in methanol under visible light illumination for 5 min. DMPO: 5, 5-dimethyl-1-pyrroline N-oxide.
Fig. 12. A schematic illustration of the charge-carrier migration pathways of (a) type-II and (b) direct Z-scheme heterojunctions for the TiO2/TpBD composite photoanode, along with the transfer of accumulated photogenerated electrons from the CB of the TpBD semiconductor to the nickel-coated magnesium alloy to induce PECCP performance.
| [1] | G.L. Yang, Y.J. Ouyang, Z.H. Xie, Y. Liu, W.X. Dai, L. Wu, Appl. Surf. Sci., 558 (2021), Article 149840. |
| [2] | Y.Y. Bu, J.P. Ao, Green Energy Environ, 2 (2017), pp. 331-362. |
| [3] | Z. Song, Z.H. Xie, Micron, 112 (2018), pp. 69-83. |
| [4] | H. Li, Y.J. Qiang, W.J. Zhao, S.T. Zhang, Corros. Sci., 191 (2021), Article 109715. |
| [5] | H. Yan, X. Fan, M. Cai, S. Song, M. Zhu, J. Colloid Interf. Sci., 602 (2021), pp. 131-145. |
| [6] | Y.J. Tarzanagh, D. Seifzadeh, Z. Rajabalizadeh, A. Habibi-Yangjeh, A. Khodayari, S. Sohrabnezhad, Surf. Coat. Tech., 380 (2019), Article 125038. |
| [7] | Y.J. Zhang, T. Li, B.J. Dou, X.j. Cui, T.W. Shao, Q. Han, Surf. Tech., 50 (2021), pp. 304-312. |
| [8] | M.L. Yang, J.H. Wu, D.Q. Fang, B. Li, Y. Yang, J. Mater. Sci. Technol., 34 (2018), pp. 2464-2471. |
| [9] | S.S. Chen, P. Wan, B.C. Zhang, E. Erişen.Deniz, H. Yang, K. Yang, J. Mater. Sci. Technol., 35 (2019), pp. 19-22. |
| [10] | R. Maurya, A.R. Siddiqui, P.K. Katiyar, K. Balani, J. Mater. Sci. Technol., 35 (2019), pp. 1767-1778. |
| [11] | P. Zhou, L.X. Yang, Y.J. Hou, G.Q. Duan, B.X. Yu, X.J. Li, Y.F. Zhai, B. Zhang, T. Zhang, F.H. Wang, Corros. Commu., 1 (2021), pp. 47-57. |
| [12] | S.J. Liao, B.X. Yu, X.L. Zhang, X.P. Lu, P. Zhou, C.Y. Zhang, X.B. Chen, T. Zhang, F.H. Wang, J. Magnes. Alloy., 9 (2021), pp. 505-519. |
| [13] | Z.Q. Zhang, R.C. Zeng, W. Yan, C.G. Lin, L. Wang, Z.L. Wang, D.C. Chen, J. Alloy. Compd., 821 (2020), Article 153515. |
| [14] | J. Chen, Y.W. Song, D.Y. Shan, E.H. Han, J. Mater. Sci. Technol., 31 (2015), pp. 384-390. |
| [15] | L.T. Guo, C.D. Gu, J. Feng, Y.B. Guo, Y. Jin, J.P. Tu, J. Mater. Sci. Technol., 37 (2020), pp. 9-18. |
| [16] | X.L. Fan, C.Y. Li, Y.B. Wang, Y.F. Huo, S.Q. Li, R.C. Zeng, J. Mater. Sci. Technol., 49 (2020), pp. 224-235. |
| [17] | R. Fang, R.J. Liu, Z.H. Xie, L. Wu, Y.J. Ouyang, M.Q. Li, Surf. Coat. Tech., 432 (2022), Article 128054. |
| [18] | L.J. Fan, W.X. Sun, Y.H. Zou, Q.Q. Xu, R.C. Zeng, J.R. Tian, J. Mater. Sci. Technol., 111 (2022), pp. 167-180. |
| [19] | L. Wu, X.X. Ding, Z.C. Zheng, A.T. Tang, G. Zhang, A. Atrens, F.S. Pan, J. Mater. Sci. Technol., 64 (2021), pp. 66-72. |
| [20] | J. Chen, L. Wu, X.X. Ding, Q. Liu, X. Dai, J.F. Song, B. Jiang, A. Atrens, F.S. Pan, J. Mater. Sci. Technol., 64 (2021), pp. 10-20. |
| [21] | X. Wang, L.X. Li, Z.H. Xie, G. Yu, Electrochim. Acta., 283 (2018), pp. 1845-1857. |
| [22] | T. Hu, Y.J. Ouyang, Z.H. Xie, L. Wu, J. Mater. Sci. Technol., 92 (2021), pp. 225-235. |
| [23] | Y.J. Ouyang, L.X. Li, Z.H. Xie, L.L. Tang, F.H. Wang, C.J. Zhong, J. Magnes. Alloy., 10 (2022), pp. 836-849. |
| [24] | Z.H. Xie, Y. Shu, T. Hu, J. Mater. Eng., 49 (2021), pp. 70-76. |
| [25] | L.X. Li, Z.H. Xie, C. Fernandez, L. Wu, D.J. Cheng, X.H. Jiang, C.J. Zhong, Electrochim. Acta, 330 (2020), Article 135186. |
| [26] | Y.H. Cao, D.J. Zheng, F. Zhang, J.S. Pan, C.J. Lin, J. Mater. Sci. Technol., 102 (2022), pp. 232-263. |
| [27] | Y.Q. Li, Y.J. Ouyang, R. Fang, X. Jiang, Z.H. Xie, L. Wu, J. Long, C.J. Zhong, Chem. Eng. J., 430 (2022), Article 132776. |
| [28] | C. Liu, X.P. Lu, Y. Li, Q.Q. Chen, T. Zhang, F.H. Wang, J. Alloy. Compd., 870 (2021), Article 159462. |
| [29] | Q. Han, Y. Li, X.P. Lu, D. Mei, Q.Q. Chen, T. Zhang, F.H. Wang, Mater. Lett., 293 (2021), Article 129731. |
| [30] | R. Gan, D.M. Wang, Z.H. Xie, L. He, Corros. Sci., 123 (2017), pp. 147-157. |
| [31] | D. Li, F. Chen, Z.H. Xie, S.Y. Shan, C.J. Zhong, J. Alloy. Compd., 705 (2017), pp. 70-78. |
| [32] | Z.H. Xie, S.Y. Shan, J. Mater. Sci., 53 (2017), pp. 3744-3755. |
| [33] | A. Gupta, C. Srivastava, Scripta. Mater., 196 (2021), Article 113763. |
| [34] | D.H. Xia, C.M. Deng, D. Macdonald, S. Jamali, D. Mills, J.L. Luo, M.G. Strebl, M. Amiri, W.X. Jin, S.Z. Song, W.B. Hu, J. Mater. Sci. Technol., 112 (2022), pp. 151-183. |
| [35] | R. Kotoka, S. Yarmolenko, D. Pai, J. Sankar, J. Mater. Sci. Technol., 31 (2015), pp. 873-880. |
| [36] | B. Tan, B. Xiang, S. Zhang, Y. Qiang, L. Xu, S. Chen, J. He, J. Colloid Interf. Sci., 582 (2021), pp. 918-931. |
| [37] | Z.H. Xie, D. Li, Z. Skeete, A. Sharma, C.J. Zhong, ACS Appl. Mater. Inter., 9 (2017), pp. 36247-36260. |
| [38] | K. Qian, W.Z. Li, X.P. Lu, X.X. Han, Y. Jin, T. Zhang, F.H. Wang, J. Magnes. Alloy., 8 (2020), pp. 1328-1340. |
| [39] | S.Y. Guo, L. Chi, T.J.Zhao Feng, Y.B. Nan, X. Sun, Y.L. Huang, B.R. Hou, X.T. Wang, Electroanal. Chem., 880 (2021), Article 114915. |
| [40] | B.W. Chen, H. Wu, R.B.Yi Liu, W.H. Wang, H.D. Xu, S.X. Zhang, H.Z. Peng, J.W. Ma, H.M. Jiang, R. Zan, S. Qiao, Y. Sun, P. Hou, P. Han, J.H. Ni, X.N. Zhang, J. Mater. Sci. Technol., 52 (2020), pp. 83-88. |
| [41] | J.H. You, Y. Zhao, L. Wang, W.T. Bao, J. Clean. Prod., 291 (2021), Article 125822. |
| [42] | S. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc., 141 (2019), pp. 1807-1822. |
| [43] | Z. Lei, Q. Yang, Y. Xu, S. Guo, W. Sun, H. Liu, L.P. Lv, Y. Zhang, Y. Wang, Nat. Commun., 9 (2018), p. 576. |
| [44] | C.L. Wang, W. Gao, N.Z. Liu, Y. Xin, X.Y. Liu, X.T. Wang, Y. Tian, X.W. Chen, B.R. Hou, Corros. Sci., 176 (2020), Article 108920. |
| [45] | S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc., 134 (2012), pp. 19524-19530. |
| [46] | Q. Xu, S. Tao, Q. Jiang, D. Jiang, J. Am. Chem. Soc., 140 (2018), pp. 7429-7432. |
| [47] | B.P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc., 135 (2013), pp. 5328-5331. |
| [48] | Y.W. Peng, W.K. Wong, Z.G. Hu, Y.D. Cheng, D.Q. Yuan, S.A. Khan, D. Zhao, Chem. Mater., 28 (2016), pp. 5095-5101. |
| [49] | W. Zhao, J. Qiao, T.L. Ning, X.K. Liu, Chin. J. Polym. Sci., 36 (2017), pp. 1-7. |
| [50] | W.B. Tsai, J.Y. Kao, T.M. Wu, W.T. Cheng, J Nanopart, 2016(2016), pp. 1-9. |
| [51] | M. Faheem, S. Aziz, X.F. Jing, T.T. Ma, J.Y. Du, F.X. Sun, Y.Y. Tian, G.S. Zhu, J. Mater. Chem. A, 7 (2019), pp. 27148-27155. |
| [52] | A.P. Cote, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Science, 310 (2005), pp. 1166-1170. |
| [53] | E.R. Garcia, R.L. Medina, M.M. Lozano, I. Hernandez Perez, M.J. Valero, A.M.M. Franco, Materials (Basel), 7 (2014), pp. 8037-8057. |
| [54] | Q. Sun, B. Aguila, L.D. Earl, C.W. Abney, L. Wojtas, P.K. Thallapally, S. Ma, Adv. Mater., 30 (2018), Article e1705479. |
| [55] | W.Q. Fan, X.Q. Yu, H.C. Lu, H.Y. Bai, C. Zhang, W.D. Shi, Appl. Catal. B-Environ., 181 (2016), pp. 7-15. |
| [56] | X. Yang, J. Wang, W. Wang, S. Zhang, C. Wang, J. Zhou, Z. Wang, Mikrochim. Acta., 186 (2019), p. 145. |
| [57] | Y. Li, M. Zhang, X. Guo, R. Wen, X. Li, X. Li, S. Li, L. Ma, Nanoscale. Horiz., 3 (2018), pp. 205-212. |
| [58] | D.B. Shinde, G. Sheng, X. Li, M. Ostwal, A.H. Emwas, K.W. Huang, Z. Lai, J. Am. Chem. Soc., 140 (2018), pp. 14342-14349. |
| [59] | X. Kang, X.W. Wu, X. Han, C. Yuan, Y. Liu, Y. Cui, Chem. Sci., 11 (2020), pp. 1494-1502. |
| [60] | C. Feng, Z.Y. Chen, J.P. Jing, M.M. Sun, G.Y. Lu, J. Tian, J. Hou, Corros. Sci., 166 (2020), pp. 1455-1466. |
| [61] | Y. Xiao, Y. Qi, X. Wang, X. Wang, F. Zhang, C. Li, Adv. Mater., 30 (2018), Article e1803401. |
| [62] | Y.Y. Bu, Z.Y. Chen, J.P. Ao, J. Hou, M.X. Sun, J. Alloy. Compd., 731 (2018), pp. 1214-1224. |
| [63] | Y. Bu, Z. Chen, W. Li, B. Hou, ACS Appl. Mater. Inter., 5 (2013), pp. 12361-12368. |
| [64] | J.P. Jing, M.M. Sun, Z.Y. Chen, J.R. Li, F.L. Xu, L.K. Xu, J. Electrochem. Soc., 164 (2017), pp. C822-C830. |
| [65] | H. Li, X.T. Wang, Y. Liu, B.R. Hou, Corros. Sci., 82 (2014), pp. 145-153. |
| [66] | J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater., 31 (2019), Article e1802981. |
| [67] | W.L. Yu, D.F. Xu, T.Y. Peng, J. Mater. Chem. A, 3 (2015), pp. 19936-19947. |
| [68] | Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, Chem, 6 (2020), pp. 1543-1559. |
| [69] | J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, Small, 11 (2015), pp. 5262-5271. |
| [70] | H. Wang, B. Zhang, F. Zhao, B. Zeng, ACS Appl. Mater. Inter., 10 (2018), pp. 35281-35288. |
| [1] | Peijun Yang, Shanshan Li, Hongbo Xie, Jianfeng Jin, Chuangwei Liu, Hucheng Pan, Yuping Ren, Weitao Jia, Yaping Zong, Gaowu Qin. Two-dimensional interface superstructures assembled by well-ordered solute atoms [J]. J. Mater. Sci. Technol., 2023, 142(0): 253-259. |
| [2] | Kui Xue, Pei-Hong Tan, Ze-Hui Zhao, Lan-Yue Cui, M Bobby Kannan, Shuo-Qi Li, Cheng-Bao Liu, Yu-Hong Zou, Fen Zhang, Zhuo-Yuan Chen, Rong-Chang Zeng. In vitro degradation and multi-antibacterial mechanisms of β-cyclodextrin@curcumin embodied Mg(OH)2/MAO coating on AZ31 magnesium alloy [J]. J. Mater. Sci. Technol., 2023, 132(0): 179-192. |
| [3] | Xiaotian Duan, Tiezhuang Han, Xiao Guan, Yuning Wang, Huhu Su, Kaisheng Ming, Jing Wang, Shijian Zheng. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates [J]. J. Mater. Sci. Technol., 2023, 136(0): 97-108. |
| [4] | Peng Li, Yuanpeng Yao, Wengen Ouyang, Ze Liu, Huayi Yin, Dihua Wang. A stable oxygen evolution splitting electrocatalysts high entropy alloy FeCoNiMnMo in simulated seawater [J]. J. Mater. Sci. Technol., 2023, 138(0): 29-35. |
| [5] | Jin-Ling Sun, Yun Feng, Zhang-Zhi Shi, Zhe Xue, Meng Cao, Sheng-Lian Yao, Zhen Li, Lu-Ning Wang. Biodegradable Zn-0.5Li alloy rib plate: Processing procedure development and in vitro performance evaluation [J]. J. Mater. Sci. Technol., 2023, 141(0): 245-256. |
| [6] | Wenyao Sun, Minghui Chen, Fuhui Wang. Effect of oxygen doping on the corrosion behavior of nanocrystalline coating under the synergy of solid NaCl deposit and water vapor [J]. J. Mater. Sci. Technol., 2023, 141(0): 257-268. |
| [7] | J. Christudasjustus, M.R. Felde, C.S. Witharamage, J. Esquivel, A.A. Darwish, C. Winkler, R.K. Gupta. Age-hardening behavior, corrosion mechanisms, and passive film structure of nanocrystalline Al-V supersaturated solid solution [J]. J. Mater. Sci. Technol., 2023, 135(0): 1-12. |
| [8] | Huafang Li, Yixing Zheng, Xiaojing Ji. Synthesis and in vitro evaluation of Ca-P coating on biodegradable Zn alloys [J]. J. Mater. Sci. Technol., 2023, 141(0): 124-134. |
| [9] | Decheng Kong, Li Wang, Guoliang Zhu, Yiqi Zhou, Xiaoqing Ni, Jia Song, Liang Zhang, Wenheng Wu, Wei Wu, Cheng Man, Da Shu, Baode Sun, Chaofang Dong. Heat treatment effects on the metastable microstructure, mechanical property and corrosion behavior of Al-added CoCrFeMnNi alloys fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2023, 138(0): 171-182. |
| [10] | Junjie Zhao, ChuanSong Wu, Lei Shi, Hao Su. Evolution of microstructures and intermetallic compounds at bonding interface in friction stir welding of dissimilar Al/Mg alloys with/without ultrasonic assistance [J]. J. Mater. Sci. Technol., 2023, 139(0): 31-46. |
| [11] | S. Shuang, G.J. Lyu, D. Chung, X.Z. Wang, X. Gao, H.H. Mao, W.P. Li, Q.F. He, B.S. Guo, X.Y. Zhong, Y.J. Wang, Y. Yang. Unusually high corrosion resistance in MoxCrNiCo medium entropy alloy enhanced by acidity in aqueous solution [J]. J. Mater. Sci. Technol., 2023, 139(0): 59-68. |
| [12] | Chuntian Yang, Hao Feng, Xiaobo Chen, Yu Han, Huabing Li, Dake Xu, Fuhui Wang. Enhanced pitting corrosion resistance of CoCrFeMnNi high entropy alloy in the presence of Desulfovibrio vulgaris via nitrogen doping [J]. J. Mater. Sci. Technol., 2023, 139(0): 92-102. |
| [13] | D.B. Wang, J. Wu, J.P. Cui, Q. Wang, T.R. Li, W. Emori, S.D. Zhang, J.Q. Wang. Long-term corrosion evolution associated with the structural heterogeneities of an Fe-based amorphous coating in H3BO3 solution at various temperatures [J]. J. Mater. Sci. Technol., 2023, 140(0): 233-248. |
| [14] | R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels [J]. J. Mater. Sci. Technol., 2022, 98(0): 123-135. |
| [15] | Rui Li, Li Liu, Yu Cui, Rui Liu, Lei Fan, Min Cao, Zhongfen Yu, Zhiyong Chen, Qingjiang Wang, Fuhui Wang. Corrosion behavior of Ti60 alloy under continuous NaCl solution spraying at 600 °C [J]. J. Mater. Sci. Technol., 2022, 124(0): 86-101. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
