J. Mater. Sci. Technol. ›› 2022, Vol. 124: 14-25.DOI: 10.1016/j.jmst.2021.12.077
• Research Article • Previous Articles Next Articles
Hongxiang Jianga,b,*(), Yan Songa,b, Lili Zhanga, Jie Hea,b, Shixin Lia,b, Jiuzhou Zhaoa,b,*(
)
Received:
2021-11-02
Revised:
2021-12-13
Accepted:
2021-12-31
Published:
2022-10-10
Online:
2022-04-01
Contact:
Hongxiang Jiang,Jiuzhou Zhao
About author:
jzzhao@imr.ac.cn (J. Zhao).Hongxiang Jiang, Yan Song, Lili Zhang, Jie He, Shixin Li, Jiuzhou Zhao. Efficient grain refinement of Al alloys induced by in-situ nanoparticles[J]. J. Mater. Sci. Technol., 2022, 124: 14-25.
Fig. 1. Diagrammatic sketch of in-situ refinement strategy induced by TiB2 nanoparticles. (a) Schematic illustration of the experimental method. (b) Solubility products of TiAl3, TiB2 and AlB2 phases in Al melt. The units for the solubility products of TiAl3, TiB2 and AlB2 phases in Al melt are respectively [%Ti][%Al]3, [%Ti][%B]2, [%Al][%B]2.
Fig. 4. Grain morphologies of (a) 0.2% Al-5Ti-1B alloy, (b) 0.4% Al-5Ti-1B alloy, (c) 0.8% Al-5Ti-1B alloy, (d) 2% Al-5Ti-1B alloy, and (e) average size of the α-Al grains of the Al-Zn-Mg-Cu alloys processed by the traditional refinement strategy with different additive amounts of Al-5Ti-1B alloy. Holding time is 5 min.
Fig. 5. Effect of holding time on the grain morphologies (a, c, e) and size distributions (b, d, f) of the Al-Zn-Mg-Cu alloys processed by the traditional refinement strategy with 0.4% Al-5Ti-1B alloy. (a, b) Holding time is 5 min; (c, d) Holding time is 30 min; (e, f) Holding time is 60 min. The grain numbers collected for Fig. 5(a), (c) and (e) are respectively 186, 133 and 125. The error for average grain sizes for Fig. 5(a), (c) and (e) are respectively 28.3, 34.1 and 37.3 μm.
Fig. 6. Effect of holding time on the grain morphologies of the Al-Zn-Mg-Cu alloys processed by the traditional refinement strategy with 2% Al-5Ti-1B alloy. (a) Holding time is 30 min; (b) Holding time is 60 min.
Fig. 7. Grain morphologies (a, c, e) and size distributions (b, d, f) of the Al-Zn-Mg-Cu alloys processed by the in-situ refinement strategy. (a, b) Holding time is 5 min; (c, d) Holding time is 30 min; (e, f) Holding time is 60 min. The average grain size and width of grain size distribution faintly increase with the holding time. The grain numbers collected for Fig. 7(a), (c) and (e) are respectively 476, 409 and 384. The error for average grain sizes for Fig. 7(a), (c) and (e) are respectively 20.4, 20.6 and 17.2 μm.
Fig. 8. Microstructures of commercial purity Al treated by traditional refinement method and in-situ refinement strategy. Grain morphologies of (a) the commercial purity Al inoculated by using traditional refinement method and (b) the commercial purity Al processed by in-situ refinement strategy. (c) TEM image of TiB2 particles in the in-situ refined commercial purity Al. (d) SAED pattern for TiB2 particle.
Element | D0j (m2/s) | Qj (kJ/mol) |
---|---|---|
Cu | 1.06 × 10-7 | 24.0 |
Zn | 5.12 × 10-8 | 22.2 |
Mg | 9.90 × 10-5 | 71.6 |
Ti | 4.29 × 10-7 | 106.7 |
Table 1. Arrhenius parameters for the diffusion coefficients of Cu, Zn, Mg and Ti in the Al melt [46,55].
Element | D0j (m2/s) | Qj (kJ/mol) |
---|---|---|
Cu | 1.06 × 10-7 | 24.0 |
Zn | 5.12 × 10-8 | 22.2 |
Mg | 9.90 × 10-5 | 71.6 |
Ti | 4.29 × 10-7 | 106.7 |
Parameter | Value |
---|---|
Contact angle between α-Al and TiB2, θ | 4.8° |
Strength of the anisotropy of the interfacial energy, ε | 0.3 |
Gibbs-Thomson coefficient, Γ(m K) | 1.05 × 10-7 |
Average jump distance of atom, δ (m) | 2.87 × 10-10 |
Gas constant, Rg (J mol-1 K - 1) | 8.314 |
Boltzmann's constant, kb (J K - 1) | 1.38 × 10-23 |
Table 2. Thermo-physical parameters used in the calculations [21,36,43,56].
Parameter | Value |
---|---|
Contact angle between α-Al and TiB2, θ | 4.8° |
Strength of the anisotropy of the interfacial energy, ε | 0.3 |
Gibbs-Thomson coefficient, Γ(m K) | 1.05 × 10-7 |
Average jump distance of atom, δ (m) | 2.87 × 10-10 |
Gas constant, Rg (J mol-1 K - 1) | 8.314 |
Boltzmann's constant, kb (J K - 1) | 1.38 × 10-23 |
Fig. 9. Kinetic behaviors of the TiB2 particles during traditional refinement process for Al-Zn-Mg-Cu alloy inoculated by 0.4%Al-5Ti-1B alloy. (a) Effect of holding time on the size distribution of TiB2 particles. (b) Effect of holding time on the number density and average size of TiB2 particles. The additive amount of refiner is 0.4%.
Fig. 10. Simulated grain morphologies evolution during traditional refinement process for Al-Zn-Mg-Cu alloy inoculated by 0.4%Al-5Ti-1B alloy. (a) Solid fraction is 3.0%. (b) Solid fraction is 20.0%. (c) Solid fraction is 90.0%. (d) Two dimensional (2D) grain morphology in the slice shown in (c). Holding time is 5 min. The computational size is 900 μm × 900 μm × 900 μm.
Fig. 11. (a) Time dependence of supersaturation, driving force and nucleation rate of TiB2 particles. (b) Time dependence of average radius and number density of TiB2 particles. (c) TiB2 particles size distributions at different holding time.
Fig. 12. Simulated grain morphologies evolution of Al-Zn-Mg-Cu alloy processed by in-situ refinement strategy. (a) Solid fraction is 3.0%. (b) Solid fraction is 20.0%. (c) Solid fraction is 90.0%. (d) Two dimensional (2D) grain morphology in the slice shown in (c). The holding time is 5 min. The computational size is 900 μm × 900 μm × 900 μm.
Fig. 13. Stokes settlement velocity of TiB2 particle vs. particle radius, and Stokes settlement distance of TiB2 particle with different radii vs. holding time. For the TiB2 particle with a radius less than 1 μm, the Stokes settlement velocity and settlement distance are both inappreciable.
[1] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[2] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[3] |
M. Cao, C.Z. Sokoluk, S.H. Pan, X.C. Li, Nat. Commun. 10 (2019) 98.
DOI URL |
[4] |
Y.J. Xu, D. Casari, Q. Du, R.H. Mathiesen, L. Arnberg, Y.J. Li, Acta Mater. 140 (2017) 224-239.
DOI URL |
[5] |
Z.Y. Fan, F. Gao, B. Jiang, Z.P. Que, Sci. Rep. 10 (2020) 9448.
DOI URL |
[6] |
Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Acta Mater. 84 (2015) 292-304.
DOI URL |
[7] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[8] |
H.X. Jiang, Q. Sun, L.L. Zhang, J.Z. Zhao, J. Alloy. Compd. 748 (2018) 774-782.
DOI URL |
[9] |
Y.W. Jia, S.C. Wang, D. Shu, J. Alloy. Compd. 821 (2020) 153504.
DOI URL |
[10] |
H.X. Jiang, S.X. Li, Q.J. Zheng, L.L. Zhang, J. He, Y. Song, C.K. Deng, J.Z. Zhao, Mater. Des. 195 (2020) 108991.
DOI URL |
[11] |
Q.J. Zheng, L.L. Zhang, H.X. Jiang, J.Z. Zhao, J. He, J. Mater. Sci. Technol. 47 (2020) 142-151.
DOI URL |
[12] |
D. Räbiger, Y.H. Zhang, V. Galindo, S. Franke, B. Willers, S. Eckert, Acta Mater. 79 (2014) 327-338.
DOI URL |
[13] |
X.L. Liao, Q.J. Zhai, J. Luo, W.J. Chen, Y.Y. Gong, Acta Mater. 55 (2007) 3103-3109.
DOI URL |
[14] |
Q.W. Bai, J. Wang, S.Q. Xing, Y.L. Ma, X.Y. Bao, Sci. Rep. 10 (2020) 10603.
DOI URL |
[15] |
E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, P.S. Grant, Acta Mater. 70 (2014) 228-239.
DOI URL |
[16] |
Y.B. Zhong, H. Wang, Y.B. Wang, J. Wang, Z. Shen, T.X. Zheng, D.S. Zhu, W.L. Ren, Z.S. Lei, Z.M. Ren, J.W. Huang, Metall. Mater. Trans. A 48 (2017) 3377-3388.
DOI URL |
[17] |
J.Y. Li, S.L. Lü, S.S. Wu, Q. Gao, Ultrason. Sonochem. 42 (2018) 814-822.
DOI URL |
[18] |
Q. Li, F. Qiu, B.X. Dong, R. Geng, M.M. Lv, Q.L. Zhao, Q.C. Jiang, Mater. Sci. Eng. A 735 (2018) 310-317.
DOI URL |
[19] |
Q. Li, F. Qiu, Y.Y. Gao, B.X. Dong, S.L. Shu, M.M. Lv, H.Y. Yang, Q.L. Zhao, Q.C. Jiang, J. Alloy. Compd. 788 (2019) 1309-1321.
DOI URL |
[20] |
J. Xu, Y. Li, K. Ma, Y.N. Fu, E.Y. Guo, Z.N. Chen, Q.F. Gu, Y.X. Han, T.M. Wang, Q. Li, Scr. Mater. 187 (2020) 142-147.
DOI URL |
[21] |
L.L. Zhang, H.X. Jiang, J.Z. Zhao, J. He, J. Mater. Process. Technol. 246 (2017) 205-210.
DOI URL |
[22] | W. Rosenhain, J.D. Grogan, T.H. Schofield, J. Inst. Met. 44 (1930) 305-318. |
[23] |
B.S. Murty, S.A. Kori, M. Chakrabory, Int. Mater. Rev. 47 (2002) 3-29.
DOI URL |
[24] | A. Cibula, J. Inst. Met. 76 (1949) 321-360. |
[25] | A. Cibula, J. Inst. Met. 80 (1951) 1-16. |
[26] |
G.P. Jones, J. Pearson, Metall. Trans. B 7 (1976) 223-234.
DOI URL |
[27] |
I. Maxwell, A. Hellawell, Acta Metall. 23 (1975) 229-237.
DOI URL |
[28] |
A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Acta Mater. 48 (2000) 2823-2835.
DOI URL |
[29] |
D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59 (2011) 4907-4921.
DOI URL |
[30] |
T.E. Quested, A.L. Greer, Acta Mater. 53 (2005) 4643-4653.
DOI URL |
[31] |
M.A. Easton, D.H. StJohn, Acta Mater. 49 (2001) 1867-1878.
DOI URL |
[32] |
M.A. Easton, D.H. StJohn, Metall. Mater. Trans. A 36 (2005) 1911-1920.
DOI URL |
[33] |
M.A. Easton, D.H. StJohn, Mater. Sci. Eng. A 486 (2008) 8-13.
DOI URL |
[34] |
M. Qian, P. Cao, M.A. Easton, S.D. McDonald, D.H. StJohn, Acta Mater. 58 (2010) 3262-3270.
DOI URL |
[35] |
X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, Q. Du, Acta Mater. 99 (2015) 337-346.
DOI URL |
[36] |
Q. Du, Y. Li, Acta Mater. 71 (2014) 380-389.
DOI URL |
[37] |
D. Shu, B. Sun, J. Mi, P.S. Grant, Acta Mater. 59 (2011) 2135-2144.
DOI URL |
[38] |
Y. Xu, D. Casari, R.H. Mathiesen, Y. Li, Acta Mater. 149 (2018) 312-325.
DOI URL |
[39] |
Y. Li, B. Hu, B. Liu, A. Nie, Q.F. Gu, J.F. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[40] |
C.X. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q.L. Xiao, Q. Li, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
[41] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267.
DOI URL |
[42] |
J. Xu, Y. Li, K. Ma, Y.N. Fu, E.Y. Guo, Z.N. Chen, Q.F. Gu, Y.X. Han, T.M. Wang, Q. Li, Scr. Mater. 187 (2020) 142-147.
DOI URL |
[43] |
Y. Song, H.X. Jiang, L.L. Zhang, J. He, J.Z. Zhao, Result Phys. 26 (2021) 104465.
DOI URL |
[44] |
X.G. Ma, X.F. Liu, H.M. Ding, J. Alloy. Compd. 471 (2009) 56-59.
DOI URL |
[45] |
G.K. Sigworth, Metall. Trans. A 15 (1984) 277-282.
DOI URL |
[46] |
Q. Sun, H.X. Jiang, J.Z. Zhao, J. He, Acta Mater. 129 (2017) 321-330.
DOI URL |
[47] |
X.F. Zhang, J.Z. Zhao, H.X. Jiang, M.F. Zhu, Acta Mater. 60 (2012) 2249-2257.
DOI URL |
[48] |
W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35 (1964) 444-451.
DOI URL |
[49] |
M.F. Zhu, S.Y. Lee, C.P. Hong, Phys. Rev. E 69 (2004) 061610.
DOI URL |
[50] |
M.F. Zhu, D.M. Stefanescu, Acta Mater. 55 (2007) 1741-1755.
DOI URL |
[51] |
S. Gurevich, A. Karma, M. Plapp, R. Trivedi, Phys. Rev. E 81 (2010) 011603.
DOI URL |
[52] |
S.Y. Pan, M.F. Zhu, Acta Mater. 58 (2010) 340-352.
DOI URL |
[53] |
T.E. Quested, A.L. Greer, Acta Mater. 52 (2004) 5233 -5233.
DOI URL |
[54] | L.L. Zhang, H.X. Jiang, J.Z. Zhao, L. Li, Q. Sun, Acta Metall. Sin. 53 (2017) 1091-1100. |
[55] |
Y. Du, Y.A. Chang, B.Y. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Yuan, Y. Liu, Y.H. He, F.Y. Xie, Mater. Sci. Eng. A 363 (2003) 140-151.
DOI URL |
[56] |
J. Friedli, P.D. Napoli, M. Rappaz, J.A. Dantzig, IOP Conf. Ser. Mater. Sci. Eng. 33 (2012) 012111.
DOI URL |
[57] |
B. Sundman, U.R. Kattner, C. Sigli, M. Stratmann, R.L. Tellier, M. Palumbo, S.G. Fries, Comput. Mater. Sci. 125 (2016) 188-196.
DOI URL |
[58] |
J.A. Marqusee, J. Ross, J. Chem. Phys. 80 (1984) 536-543.
DOI URL |
[59] |
C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Science 297 (2002) 990-993.
PMID |
[1] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[2] | Rutuja Mandavkar, Shusen Lin, Rakesh Kulkarni, Sanchaya Pandit, Shalmali Burse, Md Ahasan Habib, Puran Pandey, Sundar Kunwar, Jihoon Lee. Dual-step hybrid SERS scheme through the blending of CV and MoS2 NPs on the AuPt core-shell hybrid NPs [J]. J. Mater. Sci. Technol., 2022, 107(0): 1-13. |
[3] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
[4] | Mengyuan Hao, Pei Li, Xuexiong Li, Tianlong Zhang, Dong Wang, Qiaoyan Sun, Libin Liu, Jinshan Li, Yuyou Cui, Rui Yang, Dongsheng Xu. Heterogeneous precipitate microstructure in titanium alloys for simultaneous improvement of strength and ductility [J]. J. Mater. Sci. Technol., 2022, 124(0): 150-163. |
[5] | Xiaohui Liu, Yunzhong Liu, Zhiguang Zhou, Qiangkun Zhan. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy [J]. J. Mater. Sci. Technol., 2022, 124(0): 41-52. |
[6] | J. Christudasjustus, C.S. Witharamage, Ganesh Walunj, T. Borkar, R.K. Gupta. The influence of spark plasma sintering temperatures on the microstructure, hardness, and elastic modulus of the nanocrystalline Al-xV alloys produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2022, 122(0): 68-76. |
[7] | Jiayong Zhang, Hongwu Zhang, Qian Li, Lizi Cheng, Hongfei Ye, Yonggang Zheng, Jian Lu. The physical origin of observed repulsive forces between general dislocations and twin boundaries in FCC metals: An atom-continuum coupling study [J]. J. Mater. Sci. Technol., 2022, 109(0): 221-227. |
[8] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[9] | W.L. Wang, W.Q. Liu, X. Yang, R.R. Xu, Q.Y. Dai. Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 119(0): 11-24. |
[10] | Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging [J]. J. Mater. Sci. Technol., 2022, 120(0): 53-64. |
[11] | Jia Li, Baobin Xie, Quanfeng He, Bin Liu, Xin Zeng, Peter K. Liaw, Qihong Fang, Yong Yang, Yong Liu. Chemical-element-distribution-mediated deformation partitioning and its control mechanical behavior in high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 99-107. |
[12] | Ruijun Li, Fan Zhang, Yong Hu. Performance of switch between exchange bias and coercivity: Influences of antiferromagnetic anisotropy and exchange coupling [J]. J. Mater. Sci. Technol., 2022, 120(0): 186-195. |
[13] | Shaoyu Zhao, Yingyan Zhang, Jie Yang, Sritawat Kitipornchai. Folded graphene reinforced nanocomposites with superior strength and toughness: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2022, 120(0): 196-204. |
[14] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[15] | Zhen Ma, Huarui Zhang, Hanwei Fu, Yanzhao Yang, Jianji Wang, Ming Du, Hu Zhang. Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study [J]. J. Mater. Sci. Technol., 2022, 100(0): 182-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||