J. Mater. Sci. Technol. ›› 2022, Vol. 124: 1-13.DOI: 10.1016/j.jmst.2022.01.026
• Research Article • Next Articles
Jiawen Suna,b,c,d,1, Chao Liua,e,1, Jizhou Duana,b,c,d,*(), Jie Liub, Xucheng Donga,b,c,d, Yimeng Zhanga,b,d, Ning Wanga,b,c,d, Jing Wanga,b,c,d, Baorong Houa,b,c,d
Received:
2021-10-17
Revised:
2021-12-26
Accepted:
2022-01-15
Published:
2022-10-10
Online:
2022-03-31
Contact:
Jizhou Duan
About author:
∗Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. E-mail address: duanjz@qdio.ac.cn (J. Duan).Jiawen Sun, Chao Liu, Jizhou Duan, Jie Liu, Xucheng Dong, Yimeng Zhang, Ning Wang, Jing Wang, Baorong Hou. Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling[J]. J. Mater. Sci. Technol., 2022, 124: 1-13.
Fig. 1. Structural, thermal, and dynamic mechanical properties of PDMS-P(Ua-TUa) polymers. (A) Synthesis route. (B) FTIR spectra. (C) Infrared spectra of PDMS-P(Ua-TUa)-3000 at varied temperatures. (D) Magnified regions of (C) in the range of 1520-1700 cm-1. (E) GPC curves, (F) E’-temperature curves, and (G) tan δ-temperature curves of PDMS-P(Ua-TUa). (H) Characteristics of PDMS-P(Ua-TUa) polymers.
Fig. 2. Mechanical properties of PDMS-P(Ua-TUa) and PDMS-P(Ua-TUa)/TA. (A) Stress-strain curves of PDMS-P(Ua-TUa) and PDMS-P(Ua-TUa)/TA at 25 °C. (B) Elastic moduli of PDMS-P(Ua-TUa) and PDMS-P(Ua-TUa)/TA. (C) Cyclic tensile curves of PDMS-P(Ua-TUa)-3000/2.0 specimen at a strain of 100% (Left side) and 300% (Right side), respectively. The specimen was loaded-unloaded without intervals between two consecutive cyclic tensile (cycle 1-cycle 4). Before the 5th cyclic tensile test at a strain of 100% and 300%, the specimen was allowed to relax for 30 min and 1 h, respectively. (D) Photographs of a dumbbell-shaped specimen (PDMS-P(Ua-TUa)-3000/1.0) before and after stretching, and photographs showing the ability to lift a 1 kg dumbbell (thickness of the specimen: 1 mm). (E) Summary of the mechanical properties of different samples. (F) T2 distribution of PDMS-P(Ua-TUa)/TA. (G) Hydrogen bond cross-linking density and T2 values of PDMS-P(Ua-TUa)/TA.
Fig. 3. Self-healing properties of PDMS-P(Ua-TUa)-TA films. Self-healing processes for (A) PDMS-P(Ua-TUa)-3000, (B) PDMS-P(Ua-TUa)-3000/1.0, and (C) PDMS-P(Ua-TUa)-3000/2.0 at 25 °C in air as imaged by an optical microscope (thickness of scratch: ~300 μm, width of scratch: ~5 μm, thickness of the film: ~1 mm). (D) SAXS diffraction and the corresponding two-dimesional (2D) small-angle X-ray scattering (SAXS) pattern of PDMS-P(Ua-TUa)-TA. (E) E’-temperature curves, and (F) tan δ-temperature curves of PDMS-P(Ua-TUa)-TA. (G) Self-healing process of PDMS-P(Ua-TUa)-3000 at 25 °C in air: (a) original sample, (b) damaged sample, (c) rejoined sample, (d) self-healed sample after 12 h. To facilitate observation, the samples were dyed in red and yellow. Stress-strain curves of samples at 25 °C in air: (H) PDMS-P(Ua-TUa)-3000, (I) PDMS-P(Ua-TUa)-3000/1.0, and (J) PDMS-P(Ua-TUa)-3000/2.0.
Fig. 5. Surface properties of PDMS-P(Ua-TUa)-TA coatings on glass slides. (A) Photographs of the coatings (left to right: PDMS-P(Ua-TUa)-3000, PDMS-P(Ua-TUa)-3000/1.0, and PDMS-P(Ua-TUa)-3000/2.0). (B) Water contact angle and DIM contact angle on PDMS-P(Ua-TUa)-TA coatings. (C) Surface energy of PDMS-P(Ua-TUa)-TA coatings. (D) Water contact angle of PDMS-P(Ua-TUa)-TA coatings measured over 30 days. (E) SEM image (a) and EDS-mapping images (b-f) of PDMS-P(Ua-TUa)-3000/2.0. Scale bar: 10 μm. (F) AFM profiles of PDMS-P(Ua-TUa)-3000/2.0 coating recorded in amplitude modulation mode in air: topography image (right) and height profile (left) across the red line. (G) Adhesion strength of PDMS-P(Ua-TUa)-TA coatings adhered to the GFE and steel.
Fig. 6. Antibacterial and anti-diatom properties of PDMS-P(Ua-TUa)-TA coatings. Fluorescence images of (A) P. sp. (B) E. coli, (C) S. aureus, and (D) N. incerta adhered on (a) slide glass, (b) PDMS, (c) PDMS-P(Ua-TUa)-3000, (d) PDMS-P(Ua-TUa)-3000/1.0, and (e) PDMS-P(Ua-TUa)-3000/2.0. (E) Quantitative evaluation of adhesion rates of P. sp., E. coli and S. aureus. (F) Quantitative settlement density of N. incerta on coating surfaces.
[1] |
X. Han, J. Wu, X. Zhang, J. Shi, J. Wei, Y. Yang, B. Wu, Y. Feng, J. Mater Sci. Technol. 61 (2021) 46-62.
DOI |
[2] |
B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu, F. Ma, npj Mater. Degrad. 1 (2017) 4.
DOI URL |
[3] |
A. Leonardi, A.C. Zhang, N. Düzen, N. Aldred, J.A. Finlay, J.L. Clarke, A.S. Clare, R.A. Segalman, C.K. Ober, ACS Appl. Mater. Interfaces 13 (2021) 28790-28801.
DOI URL |
[4] |
B. He, Y. Du, B. Wang, X. Zhao, S. Liu, Q. Ye, F. Zhou, Chem. Eng. J. 427 (2022) 131019.
DOI URL |
[5] | Y. Chen, G. Zhang, G. Zhang, C. Ma, Chem. Eng. J. 421 (2021) 129755. |
[6] |
R. Chen, Y. Zhang, Q. Xie, Z. Chen, C. Ma, G. Zhang, Adv. Funct. Mater. 31 (2021) 2011145.
DOI URL |
[7] |
Y. Du, X. Wang, X. Dai, W. Lu, Y. Tang, J. Kong, J. Mater Sci. Technol. 100 (2022) 1-11.
DOI URL |
[8] | Y. Zhuo, S. Xiao, V. Håkonsen, T. Li, F. Wang, J. He, Z. Zhang, Appl. Mater. Today 19 (2020) 100542. |
[9] |
Y. Li, W. Guo, W. Li, X. Liu, H. Zhu, J. Zhang, X. Liu, L. Wei, A. Sun, Chem. Eng. J. 393 (2020) 124583.
DOI URL |
[10] |
W. Zhao, Y. Liu, Z. Zhang, X. Feng, H. Xu, J. Xu, J. Hu, S. Wang, Y. Wu, S. Yan, ACS Appl. Mater. Interfaces 12 (2020) 35445-35452.
DOI URL |
[11] |
N. Erathodiyil, H. Chan, H. Wu, J. Ying, Mater. Today 38 (2020) 84-98.
DOI URL |
[12] | K. Zhang, F. Xu, Y. Gao, Appl. Mater. Today 22 (2021) 100970. |
[13] |
P. Hu, Q. Xie, C. Ma, G. Zhang, Chem. Eng. J. 406 (2021) 126870.
DOI URL |
[14] | A. Naranjo, C. Martín, A. López-Díaz, A. Martín-Pacheco, A.M. Rodríguez, F.J. Patiño, M.A. Herrero, A.S. Vázquez, E. Vázquez, Appl. Mater. Today 21 (2020) 100806. |
[15] |
A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, J. Hazard. Mater. 398 (2020) 122962.
DOI URL |
[16] |
C. Yu, C. Wang, S. Chen, Adv. Funct. Mater. 24 (2014) 1235-1242.
DOI URL |
[17] |
H. Gong, Y. Gao, S. Jiang, F. Sun, ACS Appl. Mater. Interfaces 10 (2018) 26694-26704.
DOI URL |
[18] |
M. Urban, D. Davydovich, Y. Yang, T. Demir, Y. Zhang, L. Casabianca, Science 362 (2018) 220-225.
DOI URL |
[19] |
S. Burattini, B.W. Greenland, D.H. Merino, W. Weng, J. Seppala, H.M. Colquhoun, W. Hayes, M.E. Mackay, I.W. Hamley, S.J. Rowan, J. Am. Chem. Soc. 132 (2010) 12051-12058.
DOI PMID |
[20] |
Q. Zhang, C. Shi, D. Qu, Y. Long, B.L. Feringa, H. Tian, Sci. Adv. 4 (2018) eaat8192.
DOI URL |
[21] |
S. Wang, M.W. Urban, Nat. Rev. Mater. 5 (2020) 562-583.
DOI URL |
[22] |
C. Liu, C. Ma, Q. Xie, G. Zhang, J. Mater. Chem. A 5 (2017) 15855-15861.
DOI URL |
[23] |
H. Mutlu, E.B. Ceper, X. Li, J. Yang, W. Dong, M.M. Ozmen, P. Theato, Macromol. Rapid Commun. 40 (2019) 1800650.
DOI URL |
[24] |
Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 359 (2018) 72-76.
DOI PMID |
[25] |
S. Wu, M. Luo, D.J. Darensbourg, X. Zuo, Macromolecules 52 (2019) 8596-8603.
DOI URL |
[26] |
K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang, C. Song, Y. Wu, Y. Liu, ACS Appl. Mater. Interfaces 12 (2020) 45306-45314.
DOI URL |
[27] |
F.G. Bordwell, D.J. Algrim, J.A. Harrelson, J. Am. Chem. Soc. 110 (1988) 5903-5904.
DOI URL |
[28] |
A. Scalbert, Phytochemistry 30 (1991) 3875-3883.
DOI URL |
[29] |
T.S. Sileika, D.G. Barrett, R. Zhang, K.H.A. Lau, P.B. Messersmith, Angew. Chem. Int. Ed. 52 (2013) 10766-10770.
DOI PMID |
[30] |
E. Kurzbaum, L. Iliasafov, L. Kolik, J. Starosvetsky, D. Bilanovic, M. Butnariu, R. Armon, Sci. Total Environ. 658 (2019) 1098-1105.
DOI |
[31] |
G. Strauss, S.M. Gibson, Food Hydrocoll. 18 (2004) 81-89.
DOI URL |
[32] |
J. Cao, L. Feng, S. Feng, New J. Chem. 42 (2018) 1973-1978.
DOI URL |
[33] | PeterLarkin, in: Infrared and Raman Spectoscopy,Elsevier, 2011, pp. 135-176. |
[34] |
Y. Song, Y. Liu, T. Qi, G.L. Li, Angew. Chem. Int. Ed. 57 (2018) 13838-13842.
DOI PMID |
[35] |
Y. Yao, Z. Xu, B. Liu, M. Xiao, J. Yang, W. Liu, Adv. Funct. Mater. 31 (2021) 2006944.
DOI URL |
[36] |
J.C. Lai, J.F. Mei, X.Y. Jia, C.H. Li, X.Z. You, Z. Bao, Adv. Mater. 28 (2016) 8277-8282.
DOI URL |
[37] |
Y. Liu, K. Zhang, J. Sun, J. Yuan, Z. Yang, C. Gao, Y. Wu, Ind. Eng. Chem. Res. 58 (2019) 21452-21458.
DOI URL |
[38] |
X. Wu, J. Wang, J. Huang, S. Yang, ACS Appl. Mater. Interfaces 11 (2019) 7387-7396.
DOI URL |
[39] |
D. Wang, J. Xu, J. Chen, P. Hu, Y. Wang, W. Jiang, J. Fu, Adv. Funct. Mater. 30 (2020) 1907109.
DOI URL |
[40] |
V.M. Litvinov, W. Barendswaard, M.V. Duin, Rubber Chem. Tech 71 (1998) 105-118.
DOI URL |
[41] |
S. Yang, H. Fan, Y. Jiao, Z. Cai, P. Zhang, Y. Li, Compos. Sci. Technol. 138 (2017) 161-168.
DOI URL |
[42] |
M. Lejars, A. Margaillan, C. Bressy, Chem. Rev. 112 (2012) 4347-4390.
DOI URL |
[43] |
M.K. Chaudhury, J.A. Finlay, J.Y. Chung, M.E. Callow, J.A. Callow, Biofouling 21 (2005) 41-48.
PMID |
[44] |
J. Xu, P. Chen, J. Wu, P. Hu, Y. Fu, W. Jiang, J. Fu, Chem. Mater. 31 (2019) 7951-7961.
DOI URL |
[45] |
D. Wang, Z. Wang, S. Ren, J. Xu, C. Wang, P. Hu, J. Fu, Mater. Horiz. 8 (2021) 2238-2250.
DOI URL |
[46] |
J. Xu, J. Chen, Y. Zhang, T. Liu, J. Fu, Angew. Chem. Int. Ed. 60 (2021) 7947-7955.
DOI URL |
[47] |
M. Krogsgaard, A. Andersen, H. Birkedal, Chem. Commun. 50 (2014) 13278-13281.
DOI URL |
[48] |
T.P. Huynh, M. Khatib, H. Haick, Adv. Mater. Technol. 4 (2019) 1900081.
DOI URL |
[49] |
Y. Cao, H. Wu, S.I. Allec, B.M. Wong, D.S. Nguyen, C. Wang, Adv. Mater. 30 (2018) 1804602.
DOI URL |
[50] |
M. Khatib, O. Zohar, W. Saliba, S. Srebnik, H. Haick, Adv. Funct. Mater. 30 (2020) 1910196.
DOI URL |
[51] |
T. Wang, L. Huang, Y. Liu, X. Li, C. Liu, S. Handschuh-Wang, Y. Xu, Y. Zhao, Y. Tang, ACS Appl. Mater. Interfaces 12 (2020) 24432-24441.
DOI URL |
[52] |
S. Tian, D. Jiang, J. Pu, X. Sun, Z. Li, B. Wu, W. Zheng, W. Liu, Z. Liu, Chem. Eng. J. 370 (2019) 1-9.
DOI |
[53] |
S.M.R. Razavi, J. Oh, R.T. Haasch, K. Kim, M. Masoomi, R. Bagheri, J.M. Slauch, N. Miljkovic, ACS Sustain. Chem. Eng. 7 (2019) 14509-14520.
DOI URL |
[54] |
N.A. Mohamed, N.A.A. El-Ghany, M.M. Fahmy, Int. J. Biol. Macromol. 82 (2016) 589-598.
DOI PMID |
[55] |
A.K. Farha, Q.Q. Yang, G. Kim, H.B. Li, F. Zhu, H.Y. Liu, R.Y. Gan, H. Corke, Food Biosci. 38 (2020) 100751.
DOI URL |
[56] |
J.A. Finlay, M.E. Callow, L.K. Ista, G.P. Lopez, J.A. Callow, Integr. Comp. Biol. 42 (2002) 1116-1122.
DOI PMID |
[1] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[2] | Xiaohong Ji, Wei Wang, Xia Zhao, Lifei Wang, Fubin Ma, Yanli Wang, DuanJi zhou, Baorong Hou. Poly(dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers [J]. J. Mater. Sci. Technol., 2022, 101(0): 128-145. |
[3] | Chenhao Ren, Yao Huang, Wenkui Hao, Dawei Zhang, Xiejing Luo, Lingwei Ma, Jinke Wang, Thee Chowwanonthapunya, Chaofang Dong, Xiaogang Li. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength [J]. J. Mater. Sci. Technol., 2022, 101(0): 18-27. |
[4] | Huihui Bai, Zhixing Zhang, Yajie Huo, Yongtao Shen, Mengmeng Qin, Wei Feng. Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties [J]. J. Mater. Sci. Technol., 2022, 98(0): 169-176. |
[5] | Yuzhang Du, Xudong Wang, Xingyi Dai, Wenxuan Lu, Yusheng Tang, Jie Kong. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics [J]. J. Mater. Sci. Technol., 2022, 100(0): 1-11. |
[6] | He Zhang, Kaibin Xiao, Zhilin Lin, Shengyu Shi. Epoxy microcapsules for high-performance self-healing materials using a novel method via integrating electrospraying and interfacial polymerization [J]. J. Mater. Sci. Technol., 2022, 112(0): 59-67. |
[7] | Inime Ime Udoh, Hongwei Shi, Enobong Felix Daniel, Jianyang Li, Songhua Gu, Fuchun Liu, En-Hou Han. Active anticorrosion and self-healing coatings: A review with focus on multi-action smart coating strategies [J]. J. Mater. Sci. Technol., 2022, 116(0): 224-237. |
[8] | Yao Huang, Panjun Wang, Weimin Tan, Wenkui Hao, Lingwei Ma, Jinke Wang, Tong Liu, Fan Zhang, Chenhao Ren, Wei Liu, Dawei Zhang. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection [J]. J. Mater. Sci. Technol., 2022, 107(0): 34-42. |
[9] | Li Cheng, Chengbao Liu, Hao Wu, Haichao Zhao, Feixiong Mao, Liping Wang. A mussel-inspired delivery system for enhancing self-healing property of epoxy coatings [J]. J. Mater. Sci. Technol., 2021, 80(0): 36-49. |
[10] | Yanqi Ma, Haowei Huang, Hongda Zhou, Michael Graham, James Smith, Xinxin Sheng, Ying Chen, Li Zhang, Xinya Zhang, Elena Shchukina, Dmitry Shchukin. Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide [J]. J. Mater. Sci. Technol., 2021, 95(0): 95-104. |
[11] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[12] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[13] | Jiajia Tian, Kangwei Xu, Junhua Hu, Shijie Zhang, Guoqin Cao, Guosheng Shao. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design [J]. J. Mater. Sci. Technol., 2021, 79(0): 62-74. |
[14] | Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65(0): 137-150. |
[15] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||