J. Mater. Sci. Technol. ›› 2022, Vol. 123: 41-48.DOI: 10.1016/j.jmst.2021.12.065
• Research Article • Previous Articles Next Articles
Long Suna,b, Lingling Lic, Jiajie Fana,*(), Quanlong Xub,*(
), Dekun Mad,*(
)
Received:
2021-10-27
Revised:
2021-12-23
Accepted:
2021-12-23
Published:
2022-10-01
Online:
2022-09-30
Contact:
Jiajie Fan,Quanlong Xu,Dekun Ma
About author:
dkma@usx.edu.cn (D. Ma).Long Sun, Lingling Li, Jiajie Fan, Quanlong Xu, Dekun Ma. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation[J]. J. Mater. Sci. Technol., 2022, 123: 41-48.
Fig. 1. (a) The systhesis process for WO3/TpPa-1-COF; (b-d) SEM images of TpPa-1-COF, pure WO3 and 3%WO3/TpPa-1-COF; (e, f) and TEM and HRTEM images of 3%WO3/TpPa-1-COF.
Fig. 2. (a, b) Small-angle and wide-angle XRD patterns and (c) FT-IR spectra of as-prepared samples. (d) N2 adsorption-desorption isotherms of TpPa-1-COF, WO3 and 3%WO3/TpPa-1-COF.
Samples | SBET (m2/g) | Average pore size (nm) | Pore volume (cm3/g) |
---|---|---|---|
TpPa-1-COF | 925.9 | 2.7 | 0.64 |
3%WO3/TpPa-1-COF | 934.4 | 2.8 | 0.65 |
WO3 | 5.6 | 35.6 | 0.05 |
Table 1. Textural properities of synthesized samples.
Samples | SBET (m2/g) | Average pore size (nm) | Pore volume (cm3/g) |
---|---|---|---|
TpPa-1-COF | 925.9 | 2.7 | 0.64 |
3%WO3/TpPa-1-COF | 934.4 | 2.8 | 0.65 |
WO3 | 5.6 | 35.6 | 0.05 |
Fig. 4. The UV-vis DRS spectra (a) and PL spectra with an excitation wavelength of 350 nm (b) of the synthesized samples; (c) TR-PL spectra with corresponding fitting results of TpPa-1-COF, WO3, and 3%WO3/TpPa-1-COF.
Fig. 5. (a) Comparison of the H2 evolution rate over the as-prepared samples and (b) stability evaluation of photocatalytic H2 evolution over 3%WO3/TpPa-1-COF under visible light irradiation (λ ≥ 420 nm).
Fig. 6. (a) Transient photocurrent response and (b) electrochemical impedance spectra of TpPa-1-COF, WO3 and 3%WO3/TpPa-1-COF; Mott-Schottky plots of TpPa-1-COF (c) and WO3 (d) at 2 kHz, 3 kHz and 4 kHz.
Fig. 7. Schematic type-II (a) and S-scheme (b) mechanism over WO3/TpPa-1-COF system; (c) TEM image of WO3/TpPa-1-COF after photo-deposition of Pt NPs, the inset: HRTEM of Pt NPs.
[1] | Y. Chen, L. Li, Q. Xu, W. Chen, Y. Dong, J. Fan, D. Ma, Solar RRL 5 (2021) 20 0 0541. |
[2] |
Q. Xu, B. Zhu, B. Cheng, J. Yu, M. Zhou, W. Ho, Appl. Catal. B Environ. 255 (2019) 117770.
DOI URL |
[3] |
W. Lei, X. Pang, G. Ge, G. Liu, Nano Today 39 (2021) 101183.
DOI URL |
[4] |
Z. Jin, L. Zhang, J. Mater. Sci. Technol. 49 (2020) 144-156.
DOI URL |
[5] |
Q. Xu, D. Ma, S. Yang, Z. Tian, B. Cheng, J. Fan, Appl. Surf. Sci. 495 (2019) 143555.
DOI URL |
[6] |
B. He, C. Bie, X. Fei, B. Cheng, J. Yu, W. Ho, A.A. Al-Ghamdi, S. Wageh, Appl. Catal. B Environ. 288 (2021) 119994.
DOI URL |
[7] |
X. Kong, H. Huang, Z. Li, Y. Liang, Z. Li, S. Zhu, J. Mater. Sci. Technol. 80 (2021) 171-178.
DOI URL |
[8] |
Y. Qin, H. Li, J. Lu, F. Meng, C. Ma, Y. Yan, M. Meng, Chem. Eng. J. 384 (2020) 123275.
DOI URL |
[9] |
Q. Liu, J. Huang, H. Tang, X. Yu, J. Shen, J. Mater. Sci. Technol. 56 (2020) 196-205.
DOI URL |
[10] | Y. Chen, L. Li, Q. Xu, T. Düren, J. Fan, D. Ma, Acta Phys. Chim. Sin. 37 (2021) 2009080. |
[11] |
H. Xu, L. Wu, L. Jin, K. Wu, J. Mater. Sci. Technol. 33 (2017) 30-38.
DOI URL |
[12] |
R. Shen, L. Zhang, X. Chen, M. Jaroniec, N. Li, X. Li, Appl. Catal. B Environ. 266 (2020) 118619.
DOI URL |
[13] |
Y. Xia, B. Cheng, J. Fan, J. Yu, G. Liu, Small 15 (2019) 1902459.
DOI URL |
[14] |
Q. Yang, M. Luo, K. Liu, H. Cao, H. Yan, Appl. Catal. B Environ. 276 (2020) 119174.
DOI URL |
[15] |
T. Wang, H. Liang, D. Anito, X. Ding, B. Han, J. Mater. Chem. A 8 (2020) 7003-7034.
DOI URL |
[16] |
M. Zhang, M. Lu, Z. Lang, J. Liu, M. Liu, J. Chang, L. Li, L. Shang, M. Wang, S. Li, Y. Lan, Angew. Chem. Int. Ed. 59 (2020) 6500-6506.
DOI PMID |
[17] |
Y. Zhang, H. Tang, H. Dong, M. Gao, C. Li, X. Sun, J. Wei, Y. Qu, Z. Li, F. Zhang, J. Mater. Chem. A 8 (2020) 4334-4340.
DOI URL |
[18] |
J. Ming, A. Liu, J. Zhao, P. Zhang, H. Huang, H. Lin, Z. Xu, X. Zhang, X. Wang, J. Hofkens, M.B.J. Roeffaers, J. Long, Angew. Chem. Int. Ed. 58 (2019) 18290-18294.
DOI URL |
[19] |
H. Dong, X. Meng, X. Zhang, H. Tang, J. Liu, J. Wang, J. Wei, F. Zhang, L. Bai, X. Sun, Chem. Eng. J. 379 (2020) 122342.
DOI URL |
[20] |
H. Zhang, Y. Yang, C. Li, H. Tang, F. Zhang, G. Zhang, H. Yan, J. Mater. Chem. A 9 (2021) 16743-16750.
DOI URL |
[21] |
P. Wei, M. Qi, Z. Wang, S. Ding, W. Yu, Q. Liu, L. Wang, H. Wang, W. An, W. Wang, J. Am. Chem. Soc. 140 (2018) 4623-4631.
DOI URL |
[22] |
J. Sheng, H. Dong, X. Meng, H. Tang, Y. Yao, D. Liu, L. Bai, F. Zhang, J. Wei, X. Sun, ChemCatChem 11 (2019) 2313-2319.
DOI URL |
[23] |
X. Wang, L. Chen, S. Chong, M. Little, Y. Wu, W. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R.S. Sprick, A.I. Cooper, Nat. Chem. 10 (2018) 1180-1189.
DOI URL |
[24] |
Y. Yao, J. Li, H. Zhang, H. Tang, L. Fang, G. Niu, X. Sun, F. Zhang, J. Mater. Chem. A 8 (2020) 8949-8956.
DOI URL |
[25] |
S. Ding, J. Gao, Q. Wang, Y. Zhang, W. Song, C. Su, W. Wang, J. Am. Chem. Soc. 133 (2011) 19816-19822.
DOI URL |
[26] |
F. Zhang, J. Sheng, Z. Yang, X. Sun, H. Tang, M. Lu, H. Dong, F. Shen, J. Liu, Y. Lan, Angew. Chem. Int. Ed. 57 (2018) 12106-12110.
DOI URL |
[27] |
D. Qin, Y. Xia, Q. Li, C. Yang, Y. Qin, K. Lv, J. Mater. Sci. Technol. 56 (2020) 206-215.
DOI URL |
[28] |
Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 143-150.
DOI URL |
[29] |
G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu, H. Che, C. Lai, H. Li, T. Ding, Q. Gao, Z. Guo, Nanoscale 11 (2019) 18968-18994.
DOI URL |
[30] |
X. Du, S. Song, Y. Wang, W. Jin, T. Ding, Y. Tian, X. Li, Catal. Sci. Technol. 11 (2021) 2734-2744.
DOI URL |
[31] |
L. Zhou, Y. Li, S. Yang, M. Zhang, Z. Wu, R. Jin, Y. Xing, Chem. Eng. J. 420 (2021) 130361.
DOI URL |
[32] |
S. Jiang, J. Cao, M. Guo, D. Cao, X. Jia, H. Lin, S. Chen, Appl. Surf. Sci. 558 (2021) 149882.
DOI URL |
[33] |
D. Gao, W. Liu, Y. Xu, P. Wang, J. Fan, H. Yu, Appl. Catal. B Environ. 260 (2020) 118190.
DOI URL |
[34] |
S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc. 134 (2012) 19524-19527.
DOI PMID |
[35] |
B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang, Z. Guo, Dalton Trans. 46 (2017) 15769-15777.
DOI PMID |
[36] |
H. Zheng, J. Ou, M. Strano, R. Kaner, A. Mitchell, Z. Kalanter, Adv. Funct. Mater. 21 (2021) 2175-2196.
DOI URL |
[37] |
C. Li, M. Gao, X. Sun, H. Tang, H. Dong, F. Zhang, Appl. Catal. B Environ. 266 (2020) 118586.
DOI URL |
[38] |
S. Zhou, Y. Wang, K. Zhou, D. Ba, Y. Ao, P. Wang, Chin. Chem. Lett. 32 (2021) 2179-2182.
DOI URL |
[39] |
S. He, T. Zeng, S. Wang, H. Niu, Y. Cai, ACS Appl. Mater. Interfaces 9 (2017) 2959-2965.
DOI URL |
[40] |
C. Li, M. Gao, X. Sun, H. Tang, H. Dong, F. Zhang, Appl. Catal. B Environ. 266 (2020) 118586.
DOI URL |
[41] |
Z. Liu, Z. Zhao, M. Miyauchi, J. Phys. Chem. C 113 (2009) 17132-17137.
DOI URL |
[42] |
D. Sahoo, S. Patnaik, K. Parida, ACS Omega 4 (2019) 14721-14741.
DOI URL |
[43] |
S. Azianty, T. Boon, A. Mahdi, A. Saadah, Chem. Phys. Lett. 652 (2016) 203-208.
DOI URL |
[44] |
S. Xiao, W. Dai, X. Liu, D. Pan, H. Zou, G. Li, G. Zhang, C. Su, D. Zhang, W. Chen, H. Li, Adv. Energy Mater. 9 (2019) 1900775.
DOI URL |
[45] |
W. Li, Q. Xu, W. Chen, F. Gou, S. Zhou, J. Li, C. Qi, D. Ma, Chem. Commun. 57 (2021) 10419-10422.
DOI URL |
[46] |
S. Zulfiqar, L. Song, N. Rahman, H. Tang, S. Shah, X. Yu, Q. Liu, Rare Met. 40 (2021) 2381-2391.
DOI URL |
[47] |
C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) 2100317.
DOI URL |
[48] |
M. Altomare, N.T. Nguyen, S. Hejazi, P. Schmuki, Adv. Funct. Mater. 28 (2018) 1704259.
DOI URL |
[49] | J. Zhang, S. Shao, D. Zhou, Q. Xu, T. Wang, J. CO2 Util 50 (2021) 101584. |
[50] |
F. Gao, Y. Zhao, L. Zhang, B. Wang, Y. Wang, X. Huang, K. Wang, W. Feng, P. Liu, J. Mater. Chem. A 6 (2018) 18979-18986.
DOI URL |
[51] |
J. Peng, J. Shen, X. Hu, H. Tang, Q. Zulfiqar, Chin. Liu, J. Catal. 42 (2021) 87-96.
DOI URL |
[52] | Z. Mei, G. Wang, S. Yan, Acta Phys. Chim. Sin. 37 (2021) 2009097. |
[53] |
F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41 (2020) 9-20.
DOI URL |
[54] | L. Sun, L. Li, J. Yang, J. Fan, Q. Xu, Chin. J. Catal. 42 (2021) 350-358. |
[55] | Q. Xu, B. Cheng, J. Yu, G. Liu, Carbon 118 (2017) 241-249. |
[56] |
A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 124 (2002) 13547-13553.
PMID |
[1] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[2] | Libo Wang, Xingang Fei, Liuyang Zhang, Jiaguo Yu, Bei Cheng, Yuhua Ma. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst [J]. J. Mater. Sci. Technol., 2022, 112(0): 1-10. |
[3] | Shijie Li, Mingjie Cai, Chunchun Wang, Yanping Liu, Neng Li, Peng Zhang, Xin Li. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight [J]. J. Mater. Sci. Technol., 2022, 123(0): 177-190. |
[4] | Meng Dai, Zuoli He, Peng Zhang, Xin Li, Shuguang Wang. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 122(0): 231-242. |
[5] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[6] | Yabin Jiang, Lei Zeng, Chi Cao, Wensheng Yang, Limin Huang. Accumulation of localized charge on the surface of polymeric carbon nitride boosts the photocatalytic activity [J]. J. Mater. Sci. Technol., 2022, 111(0): 9-16. |
[7] | Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects [J]. J. Mater. Sci. Technol., 2022, 114(0): 143-164. |
[8] | Jizhou Jiang, Zhiguo Xiong, Haitao Wang, Guodong Liao, Saishuai Bai, Jing Zou, Pingxiu Wu, Peng Zhang, Xin Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 118(0): 15-24. |
[9] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
[10] | Minghui Xiong, Juntao Yan, Bo Chai, Guozhi Fan, Guangsen Song. Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdS heterojunctions with significantly boosted photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 179-188. |
[11] | Mir Ghasem Hosseini, Pariya Yardani Sefidi, Ahmet Musap Mert, Solen Kinayyigit. Investigation of solar-induced photoelectrochemical water splitting and photocatalytic dye removal activities of camphor sulfonic acid doped polyaniline -WO3- MWCNT ternary nanocomposite [J]. J. Mater. Sci. Technol., 2020, 38(0): 7-18. |
[12] | Qinqin Liu, Jinxin Huang, Hua Tang, Xiaohui Yu, Jun Shen. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 196-205. |
[13] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||