J. Mater. Sci. Technol. ›› 2022, Vol. 118: 1-14.DOI: 10.1016/j.jmst.2021.12.011
• Research Article • Next Articles
F. Liua,b, Z.Y. Liua,b,c,*(
), G.Y. Hea,b, L.N. Oua,b
Received:2021-09-29
Revised:2021-12-04
Accepted:2021-12-04
Published:2022-08-10
Online:2022-01-30
Contact:
Z.Y. Liu
About author:* Central South University, China E-mail address: liuzhiyi335@163.com (Z.Y. Liu).F. Liu, Z.Y. Liu, G.Y. He, L.N. Ou. Dislocation ordering and texture strengthening of naturally aged Al-Cu-Mg alloy[J]. J. Mater. Sci. Technol., 2022, 118: 1-14.
Fig. 1. Grain microstructure evolution of Al-Cu-Mg alloys. (a) 30-ST sample; (b) 31-ST sample; (c) 32-ST sample; (d) 33-ST sample; (e) 34-ST sample; (f) 35-ST sample; (g) 36-ST sample; (h) 37-ST sample; (i) 38-ST sample; (j) 39-ST sample; (k) 40-ST sample.
Fig. 2. EBSD maps of Al-Cu-Mg alloys. (a) IPF map of 32-ST sample; (b) GOS map of 32-ST sample; (c) GND map of 32-ST sample; (d) IPF map of 36-ST sample; (e) GOS map of 36-ST sample; (f) GND map of 36-ST sample; (g) IPF map of 40-ST sample; (h) GOS map of 40-ST sample; (i) GND map of 40-ST sample.
Fig. 4. TEM images of grain boundaries of Al-Cu-Mg alloys, electron beam (EB) directions taken from <011>, <001> and <1(-)12>. (a) 32-ST sample, EB//<011>; (b) 36-ST sample, EB//<011>; (c) 40-ST sample, EB//<011>; (d) 32-ST sample, EB//<001>; (e) 36-ST sample, EB//<011>; (f) 40-ST sample, EB//<011>; (g) 32-ST sample, EB//<1(-)12>; (h) 36-ST sample, EB//<1(-)12>; (i) 40-ST sample, EB//<1(-)12>.
Fig. 5. HAADF images of 40-ST sample, electron beam direction taken from <011>. (a) HAADF image; (b) SAED pattern; (c) EDX mapping of rectangle in Fig. 5(a); (d) EDX point scanning of red and green circles in Fig. 5(a); (e) bright field image of 40-ST sample; (f) dark field image of 40-ST sample; (g) two-beam diffraction, EB//[110]; (h) crystal plane orientation corresponding to Fig. 5(e-g); (i) HAADF image of screw dislocation and EDX mapping of screw dislocation.
Fig. 6. TEM images of grain interior of Al-Cu-Mg alloys, electron beam (EB) directions taken from <110>, <100> and <1(-)12>. (a) 32-ST sample, EB//<110>; (b) 36-ST sample, EB//<110>; (c) 40-ST sample, EB//<110>; (d) 32-ST sample, EB//<100>; (e) 36-ST sample, EB//<100>; (f) 40-ST sample, EB//<100>; (g) 32-ST sample, EB//<1(-)12>; (h) 36-ST sample, EB//<1(-)12>; (i) 40-ST sample, EB//<1(-)12>.
Fig. 8. ODF figure measured by XRD of Al-Cu-Mg alloys. (a) 30-ST sample; (b) 32-ST sample; (c) 34-ST sample; (d) 36-ST sample; (e) 38-ST sample; (f) 40-ST sample.
| Alloy number | Grain boundary type | Misorientation angle range (°) | Volume fraction |
|---|---|---|---|
| 32-ST | Low angle grain boundaries | 1-15 | 22.9% |
| 32-ST | High angle grain boundaries | 15-180 | 77.1% |
| 36-ST | Low angle grain boundaries | 1-15 | 16.2% |
| 36-ST | High angle grain boundaries | 15-180 | 83.8% |
| 40-ST | Low angle grain boundaries | 1-15 | 17.4% |
| 40-ST | High angle grain boundaries | 15-180 | 82.6% |
Table 1. Volume fraction of LAGBs and HAGBs.
| Alloy number | Grain boundary type | Misorientation angle range (°) | Volume fraction |
|---|---|---|---|
| 32-ST | Low angle grain boundaries | 1-15 | 22.9% |
| 32-ST | High angle grain boundaries | 15-180 | 77.1% |
| 36-ST | Low angle grain boundaries | 1-15 | 16.2% |
| 36-ST | High angle grain boundaries | 15-180 | 83.8% |
| 40-ST | Low angle grain boundaries | 1-15 | 17.4% |
| 40-ST | High angle grain boundaries | 15-180 | 82.6% |
Fig. 11. Distribution of GOS, misorientation angle and Taylor factor of Al-Cu-Mg alloys. (a) Grain orientation spread angle; (b) average misorientation angle; (c) average Taylor factor.
Fig. 13. Orientation relation between screw dislocation and slip plane. (a) SAED pattern of 36-ST sample, EB//[110]; (b) Crystal plane orientation corresponding to Fig. 13(a); (c) TEM Bright field image corresponding to Fig. 13(a); (d) Slip systems corresponding to Fig. 13(b).
| Alloy Number | Grain Diameter (μm) | | |
|---|---|---|---|
| 30-ST | 29.68 | 183.49 | 18.35 |
| 31-ST | 36.55 | 165.41 | 16.54 |
| 32-ST | 36.12 | 166.39 | 16.64 |
| 33-ST | 32.34 | 175.84 | 17.58 |
| 34-ST | 24.26 | 203.03 | 20.30 |
| 35-ST | 21.36 | 216.37 | 21.64 |
| 36-ST | 21.42 | 216.07 | 21.61 |
| 37-ST | 21.92 | 213.59 | 21.36 |
| 38-ST | 18.40 | 233.13 | 23.31 |
| 39-ST | 19.69 | 225.36 | 22.54 |
| 40-ST | 21.65 | 214.92 | 21.49 |
Table 2. Contribution of grain refinement to strength.
| Alloy Number | Grain Diameter (μm) | | |
|---|---|---|---|
| 30-ST | 29.68 | 183.49 | 18.35 |
| 31-ST | 36.55 | 165.41 | 16.54 |
| 32-ST | 36.12 | 166.39 | 16.64 |
| 33-ST | 32.34 | 175.84 | 17.58 |
| 34-ST | 24.26 | 203.03 | 20.30 |
| 35-ST | 21.36 | 216.37 | 21.64 |
| 36-ST | 21.42 | 216.07 | 21.61 |
| 37-ST | 21.92 | 213.59 | 21.36 |
| 38-ST | 18.40 | 233.13 | 23.31 |
| 39-ST | 19.69 | 225.36 | 22.54 |
| 40-ST | 21.65 | 214.92 | 21.49 |
| Alloy | GNDs density (× | |
|---|---|---|
| 36-ST | 5.11 | 192.50 |
| 40-ST | 5.37 | 197.34 |
Table 3. Contribution of Goss texture to yield stress.
| Alloy | GNDs density (× | |
|---|---|---|
| 36-ST | 5.11 | 192.50 |
| 40-ST | 5.37 | 197.34 |
| [1] |
H. So, S.J. Won, J. Park, S.J. Oh, L. Kang, K.H. Kim, Mater. Sci. Eng. A 824 (2021) 141573.
DOI URL |
| [2] |
F. Liu, Z. Liu, M. Liu, Y. Hu, Y. Chen, S. Bai, J. Mater. Eng. Perform. 28 (2019) 1324-1336.
DOI URL |
| [3] |
T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862-871.
DOI URL |
| [4] |
Z. Huda, P. Edi, Mater. Des. 46 (2013) 552-560.
DOI URL |
| [5] |
F. Liu, Z. Liu, M. Liu, Y. Hu, Y. Chen, S. Bai, Mater. Sci. Eng. A 726 (2018) 309-319.
DOI URL |
| [6] |
Y. Hu, Z. Liu, Q. Zhao, S. Bai, F. Liu, Materials 11 (2018) 2481.
DOI URL |
| [7] |
S. Saimoto, B.J. Diak, A. Kula, M. Niewczas, Acta. Mater. 198 (2020) 168-177.
DOI URL |
| [8] |
L. Zhao, H.G. Yan, J.H. Chen, W.J. Xia, B. Su, M. Song, Z.Z. Li, X.Y. Li, Y. Liao, J. Alloy. Compd. 854 (2021) 157079.
DOI URL |
| [9] |
R. Haghayeghi, P. Kapranos, Mater. Lett. 129 (2014) 182-184.
DOI URL |
| [10] |
F. Qian, S. Jin, G. Sha, Y. Li, Acta Mater 157 (2018) 114-125.
DOI URL |
| [11] |
A.D. Luca, D.N. Seidman, D.C. Dunand, Acta. Mater. 194 (2020) 60-67.
DOI URL |
| [12] |
Z. Zhu, M.J. Starink, Mater. Sci. Eng. A 488 (2008) 125-133.
DOI URL |
| [13] |
D. Shao, P. Zhang, J.Y. Zhang, G. Liu, R.H. Wang, W.Q. Liu, G. Sha, J. Sun, Metall. Mater. Trans. A 48 (2017) 4121-4134.
DOI URL |
| [14] |
T. Masuda, X. Sauvage, S. Hirosawa, Z.J. Horita, Mater. Sci. Eng. A 793 (2020) 139668.
DOI URL |
| [15] | Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci. Tech-nol. 44 (2020) 171-190. |
| [16] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
| [17] |
T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
| [18] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267.
DOI URL |
| [19] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
| [20] |
Q. Li, X. Lin, Q. Luo, Y. Chen, J.F. Wang, B. Jiang, F.S. Pan, Inter. J. Min, Met. Mater. 29 (2022) 32-48.
DOI URL |
| [21] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
| [22] |
J. Xu, Y. Li, K. Ma, Y.N. Fu, E.Y. Guo, Z.N. Chen, Q.F. Gu, Y.X. Han, T.G. Wang, Q. Li, Scripta Mater. 187 (2020) 142-147.
DOI URL |
| [23] |
V. Gavini, K. Bhattacharya, M. Ortiz, Phys. Rev. B 76 (2007) 180101.
DOI URL |
| [24] |
P.B. Hirsch, J. Silcox, R.E. Smallman, K.H. Westmacott, Philos. Mag. 3 (1958) 897-908.
DOI URL |
| [25] |
D. Kuhlmann-wilsdorf, Philos. Mag. 3 (1958) 125-139.
DOI URL |
| [26] |
J.D. Embury, R.B. Nicholson, Acta Metall 11 (1963) 347-354.
DOI URL |
| [27] |
J.D. Embury, R.B. Nicholson, Acta Metall 13 (1965) 403-417.
DOI URL |
| [28] |
Z.Y. Liu, F.D. Li, P. Xia, S. Bai, Y.X. Gu, D.E. Yu, S.M. Zeng, Mater. Sci. Eng. A 625 (2015) 271-277.
DOI URL |
| [29] |
D. Kumar, G. Shankar, K.G. Prashanth, S. Suwas, Mater. Sci. Eng. A 820 (2021) 141483.
DOI URL |
| [30] |
F.D. Li, Z.Y. Liu, W.T. Wu, P. Xia, P.Y. Ying, Y.R. Zhou, W.J. Liu, L.Q. Lu, A. Wang, Mater. Sci. Eng. A 679 (2017) 204-214.
DOI URL |
| [31] |
S.C. Wang, M.J. Starink, Int. Mater. Rev. 50 (2005) 193-215.
DOI URL |
| [32] |
J.C. Haley, F. Liu, E. Tarleton, A.C.F. Cocks, G.R. Odette, S. Lozano-Perez, S.G. Roberts, Acta Mater 181 (2019) 173-184.
DOI |
| [33] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenom-ena, third ed., Elsevier Science, Oxford, 2017. |
| [34] |
W. Li, Y. Shao, H.T. Liu, Y. Wang, W.J. Zhu, C.Y. Xie, J. Mater. Res. 31 (2016) 1-8.
DOI URL |
| [35] |
Z.G. Chen, J.K. Ren, Z.G. Yuan, S.P. Ringer, Mater. Sci. Eng. A 787 (2020) 139447.
DOI URL |
| [36] |
J.D. Embury, Mater. Sci. Forum 217-222 (1996) 57-70.
DOI URL |
| [37] | C.F. Bonilla, Nucl. Sci. Eng. 65 (1978) 568-569. |
| [38] |
J.F. Nie, B.C. Muddle, Acta Mater 56 (2008) 3490-3501.
DOI URL |
| [39] |
B.I. Rodgers, P.B. Prangnell, Acta Mater 108 (2016) 55-67.
DOI URL |
| [40] |
A.J. Ardell, Metall. Mater. Trans. A 16 (1985) 2131-2165.
DOI URL |
| [41] |
A. de Vaucorbeil, W.J. Poole, C.W. Sinclair, Mater. Sci. Eng. A 582 (2013) 147-154.
DOI URL |
| [42] |
K. Srivastava, D. Weygand, D. Caillard, P. Gumbsch, Nat. Commun. 11 (2020) 5098.
DOI PMID |
| [43] |
R.K.W. Marceau, A. de Vaucorbeil, S.P.Ringer G.Sha, W.J. Pooleb, Acta Mater 61 (2013) 7285-7303.
DOI URL |
| [44] |
H. Hargarter, M.T. Lyttle, E.A. Starke, Mater. Sci. Eng. A 257 (1998) 87-99.
DOI URL |
| [1] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
