J. Mater. Sci. Technol. ›› 2022, Vol. 116: 192-198.DOI: 10.1016/j.jmst.2021.10.045
• Research Article • Previous Articles Next Articles
Jinfeng Zhanga, Junwei Fua,b,*(), Kai Daia,*(
)
Received:
2021-10-11
Revised:
2021-10-28
Accepted:
2021-10-31
Published:
2022-01-22
Online:
2022-07-26
Contact:
Junwei Fu,Kai Dai
About author:
daikai940@chnu.edu.cn (K. Dai).Jinfeng Zhang, Junwei Fu, Kai Dai. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity[J]. J. Mater. Sci. Technol., 2022, 116: 192-198.
Samples | mx*/m0 | my*/m0 | ||
---|---|---|---|---|
Electrons | holes | electrons | holes | |
g-C3N4 | 0.96 | 2.37 | 1.56 | 4.15 |
Sb | 0.43 | 0.42 | 0.383 | 0.43 |
Table 1. Effective masses of electrons and holes for g-C3N4 and Sb with different directions. The m0, mx* and my* represent the static mass of electrons, x direction effective mass and y direction effective mass, respectively.
Samples | mx*/m0 | my*/m0 | ||
---|---|---|---|---|
Electrons | holes | electrons | holes | |
g-C3N4 | 0.96 | 2.37 | 1.56 | 4.15 |
Sb | 0.43 | 0.42 | 0.383 | 0.43 |
Fig. 2. (a) Calculated interface charge transfer between g-C3N4 and Sb in Sb/g-C3N4 van der Waals heterostructures. (b) Free energy diagrams of CO2 reduction to CO on different models and active sites. The cyan and yellow area presents charge negative and positive area, respectively.
Fig. 3. (a) Schematic diagram of preparation process of Sb/g-C3N4 van der Waals heterostructures. (b) XRD patterns and (c) FT-IR spectra of the as-prepared samples.
Fig. 4. Atomic force microscope (AFM) image (a) and profile height (b) of exfoliated antimonene. TEM image (c), high-resolution TEM image (d), and energy distribution spectra (EDS) mapping (e) of 30%Sb/CN.
Fig. 5. (a) High resolution Sb 3d X-ray photoelectron spectrum (XPS) in 30%Sb/CN. (b) UV-visible diffuse reflectance spectra of the as-prepared samples. (c) Photoluminescence (PL) spectra and (d) time-resolved PL spectra of 30%Sb/CN and pure g-C3N4.
Fig. 6. (a) Photocatalytic activity for CO2 reduction reactions over the as-prepared samples. (b) Catalytic stability of the optimal sample 30%Sb/CN. In-situ FTIR spectra of (c) 30%Sb/CN and (d) g-C3N4 after introduction of CO2 and irradiation for different times.
[1] | C. Wu, Y. Zhou, Z. Zou, Chin. J. Catal. 32 (2011) 1565-1572. |
[2] |
Y. Zheng, Z. Pan, X. Wang, Chin. J. Catal. 34 (2013) 524-535.
DOI URL |
[3] |
M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936.
DOI URL |
[4] |
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613.
DOI URL |
[5] |
D. Li, Y. Huang, S. Li, C. Wang, Y. Liu, Chin. J. Catal. 41 (2020) 154-160.
DOI URL |
[6] |
H. Wang, Y. Wang, L. Guo, X. Zhang, C. Ribeiro, T. He, Chin. J. Catal. 41 (2020) 131-139.
DOI URL |
[7] |
X.A. Quan, A. Wh, A. Sl, A. Cl, B. Jz, P.D. Chin, J. Catal. 41 (2020) 140-153.
DOI URL |
[8] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.
DOI URL |
[9] |
J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, Adv. Energy Mater. 8 (2018) 1701503.
DOI URL |
[10] |
X.P. Dong, F.X. Cheng, J. Mater. Chem. A 3 (2015) 23642-23652.
DOI URL |
[11] |
K. Li, B. Peng, T. Peng, ACS Catal 6 (2016) 7485-7527.
DOI URL |
[12] |
J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32 (2020) 222-243.
DOI URL |
[13] |
X. Chen, Q. Dang, R. Sa, L. Li, L. Li, J. Bi, Z. Zhang, J. Long, Y. Yu, Z. Zou, Chem. Sci. 11 (2020) 6915-6922.
DOI PMID |
[14] | Y.F. Li, M. Zhang, L. Zhou, S.J. Yang, Z.S. Wu, Y.H. Ma, Acta Phys. Chim. Sin. 37 (2021) 2009030. |
[15] |
W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu, Z. Zou, J. Am. Chem. Soc. 141 (2019) 7615-7621.
DOI URL |
[16] |
M.Z. Rahman, C.B. Mullins, Acc. Chem. Res. 52 (2019) 248-257.
DOI URL |
[17] |
X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 9 (2016) 2177-2196.
DOI URL |
[18] |
Y. Li, X. Li, H. Zhang, J. Fan, Q. Xiang, J. Mater. Sci. Technol. 56 (2020) 69-88.
DOI URL |
[19] |
J. Liu, W. Fu, Y. Liao, J. Fan, Q. Xiang, J. Mater. Sci. Technol. 91 (2021) 224-240.
DOI URL |
[20] |
G. Gao, Y. Jiao, E.R. Waclawik, A. Du, J. Am. Chem. Soc. 138 (2016) 6292-6297.
DOI URL |
[21] |
L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Appl. Catal. B 217 (2017) 388-406.
DOI URL |
[22] |
Y. Li, S. Wang, W. Chang, L. Zhang, Z. Wu, R. Jin, Y. Xing, Appl. Cata. B 274 (2020) 119116.
DOI URL |
[23] | C. Bie, B. Cheng, J. Fan, W. Ho, J. Yu, Energychem 3 (2021) 10 0 051. |
[24] |
W.-. J. Ong, L.-. L. Tan, S.-. P. Chai, S.-. T. Yong, A.R. Mohamed, Nano Energy 13 (2015) 757-770.
DOI URL |
[25] |
Z. Wang, T. Hu, K. Dai, J. Zhang, C. Liang, Chin. J. Catal. 38 (2017) 2021-2029.
DOI URL |
[26] | J. Lv, J. Zhang, J. Liu, Z. Li, K. Dai, C. Liang, A.C.S. Sustain, Chem. Eng. 6 (2018) 696-706. |
[27] |
Y. Huo, J. Zhang, K. Dai, Q. Li, J. Lv, G. Zhu, C. Liang, Appl. Catal. B 241 (2019) 528-538.
DOI URL |
[28] |
H.J.W. Li, H. Zhou, K. Chen, K. Liu, S. Li, K. Jiang, W. Zhang, Y. Xie, Z. Cao, H. Li, H. Liu, X. Xu, H. Pan, J. Hu, D. Tang, X. Qiu, J. Fu, M. Liu, Solar RRL 4 (2020) 1900416.
DOI URL |
[29] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B 243 (2019) 556-565.
DOI URL |
[30] |
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[31] |
Y. Li, M. Zhou, B. Cheng, Y. Shao, J. Mater. Sci. Technol. 56 (2020) 1-17.
DOI URL |
[32] | S. Wageh, A .A. Al-Ghamdi, L. Liu, Acta Phys. Chim. Sin. 37 (2021) 2010024. |
[33] |
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (2017) 1601694.
DOI URL |
[34] | K. Dai, L. Lu, C. Liang, Q. Liu, G. Zhu, Appl. Catal. B 156 (2014) 331-340. |
[35] |
M. Wang, M. Shen, L. Zhang, J. Tian, X. Jin, Y. Zhou, J. Shi, Carbon N Y 120 (2017) 23-31.
DOI URL |
[36] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B 243 (2019) 556-565.
DOI URL |
[37] |
T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H. Ji, Z. Qin, Z. Wu, Nanoscale 11 (2019) 8138-8149.
DOI URL |
[38] |
Y.-.J. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, W. Bai, Y. Chen, Z.-. T. Yu, Z. Zou, Appl. Catal. B 246 (2019) 120-128.
DOI URL |
[39] |
F. Dong, T. Xiong, Y. Sun, Y. Zhang, Y. Zhou, Chem. Commun. 51 (2015) 8249-8252.
DOI URL |
[40] | K. Dai, J. Lv, J. Zhang, G. Zhu, L. Geng, C. Liang, A.C.S. Sustain, Chem. Eng. 6 (2018) 12817-12826. |
[41] |
J. Low, S. Cao, J. Yu, S. Wageh, Chem. Commun. 50 (2014) 10768-10777.
DOI URL |
[42] | Q. Su, Y. Li, R. Hu, F. Song, S. Liu, C. Guo, S. Zhu, W. Liu, J. Pan, Adv. Sustain. Syst. 4 (2020) 20 0 0130. |
[43] |
J.E. Ellis, D.C. Sorescu, S.I. Hwang, S.C. Burkert, D.L. White, H. Kim, A. Star, ACS Appl. Mater. Inter. 11 (2019) 41588-41594.
DOI URL |
[44] |
Y.-. Y. Han, X.-. L. Lu, S.-. F. Tang, X.-. P. Yin, Z.-. W. Wei, T.-. B. Lu, Adv. Energy Mater. 8 (2018) 1702992.
DOI URL |
[45] |
B. Zhu, H. Tan, J. Fan, B. Cheng, J. Yu, W. Ho, J. Materiomics 7 (2021) 988-997.
DOI URL |
[46] |
H. Che, G. Che, P. Zhou, C. Liu, H. Dong, J. Colloid Interface Sci. 546 (2019) 262-275.
DOI URL |
[47] |
J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, S.-. Z. Qiao, Adv. Mater. 30 (2018) 1800128.
DOI URL |
[48] |
P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, ACS Sustain. Chem. Eng. 6 (2018) 965-973.
DOI URL |
[49] |
A. Mahmood, G. Shi, X. Wang, X. Xie, J. Sun, Appl. Catal. B 278 (2020) 119310.
DOI URL |
[50] |
F. He, B.C. Zhu, B. Cheng, J.G. Yu, W.K. Ho, W. Macyk, Appl. Catal. B 272 (2020) 119006.
DOI URL |
[51] |
J. Gu, Z. Du, C. Zhang, J. Ma, B. Li, S. Yang, Adv. Energy Mater. 7 (2017) 1700447.
DOI URL |
[52] |
F. Li, M. Xue, J. Li, X. Ma, L. Chen, X. Zhang, D.R. MacFarlane, J. Zhang, Angew. Chem. Int. Ed. 56 (2017) 14718-14722.
DOI URL |
[53] |
X. Wang, R. Quhe, W. Cui, Y. Zhi, Y. Huang, Y. An, X. Dai, Y. Tang, W. Chen, Z. Wu, W. Tang, Carbon N Y 129 (2018) 738-744.
DOI URL |
[54] | P.H. Li, F. Wang, S.Q. Wei, X.Y. Li, Y. Zhou, Phys. Chem. Chem. Phys. 19 (2017) 4 405-4 410. |
[55] |
H.-. Z. Wu, S. Bandaru, X.-. L. Huang, J. Liu, L.-. L. Li, Z. Wang, Phys. Chem. Chem. Phys. 21 (2019) 1514-1520.
DOI URL |
[56] |
K. Jiang, L. Zhu, Z. Wang, K. Liu, H. Li, J. Hu, H. Pan, J. Fu, N. Zhang, X. Qiu, M. Liu, Appl. Surf. Sci. 508 (2020) 145173.
DOI URL |
[57] | J. Fu, S. Wang, Z. Wang, K. Liu, H. Li, H. Liu, J. Hu, X. Xu, H. Li, M. Liu, Front. Phys. 15 (2020) 33201. |
[58] |
J. Fu, K. Liu, K. Jiang, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, D. Tang, X. Wang, X. Qiu, M. Liu, Adv. Sci. 6 (2019) 1900796.
DOI URL |
[59] |
M. Xiong, J. Yan, B. Chai, G. Fan, G. Song, J. Mater. Sci. Technol. 56 (2020) 179-188.
DOI URL |
[60] | Hongzhiwei Technology, Device Studio, Version 2021A,China, 2021. Available online: https://iresearch.net.cn/cloudSoftware. |
[61] | X. Fei, H. Tan, B. Cheng, B. Zhu, L. Zhang, Acta Phys. Chim. Sin. 37 (2021) 1000-6818. |
[62] |
T. Zhang, H. Shang, B. Zhang, D. Yan, X. Xiang, ACS Appl. Mater. Inter. 13 (2021) 16536-16544.
DOI URL |
[1] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
[2] | Xuewen Wang, Qiuchan Li, Qingzhuo Lin, Rongbin Zhang, Mingyue Ding. CdS-sensitized 3D ordered macroporous g-C3N4 for enhanced visible-light photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2022, 111(0): 204-210. |
[3] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[4] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
[5] | Derek Hao, Tianyi Ma, Baohua Jia, Yunxia Wei, Xiaojuan Bai, Wei Wei, Bing-Jie Ni. Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr [J]. J. Mater. Sci. Technol., 2022, 109(0): 276-281. |
[6] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[7] | Feihu Mu, Benlin Dai, Wei Zhao, Shijian Zhou, Haibao Huang, Gang Yang, Dehua Xia, Yan Kong, Dennis Y.C. Leung. Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 37-48. |
[8] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
[9] | Heng Ma, Xin Liu, Ning Liu, Yan Zhao, Yongguang Zhang, Zhumabay Bakenov, Xin Wang. Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 115(0): 140-147. |
[10] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
[11] | Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 239-262. |
[12] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[13] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
[14] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
[15] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||