J. Mater. Sci. Technol. ›› 2022, Vol. 110: 35-42.DOI: 10.1016/j.jmst.2021.08.081
• Research Article • Previous Articles Next Articles
Li-Chuan Jiaa,b, Chang-Ge Zhoub, Kun Daic, Ding-Xiang Yanb,d,*(
), Zhong-Ming Lib,*(
)
Received:2021-05-02
Revised:2021-07-18
Accepted:2021-08-30
Published:2021-11-09
Online:2021-11-09
Contact:
Ding-Xiang Yan,Zhong-Ming Li
About author:zmli@scu.edu.cn (Z.-M. Li).Li-Chuan Jia, Chang-Ge Zhou, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Facile fabrication of highly durable superhydrophobic strain sensors for subtle human motion detection[J]. J. Mater. Sci. Technol., 2022, 110: 35-42.
Fig. 1. (a) Schematic diagram for the fabrication procedure of the SPC/cotton textile. (b-d) Surface SEM images of cotton textile. (e-g) Surface SEM images of SPC15.
Fig. 2. (a) The optical images of CA for pure cotton textile, SPC05, SPC15 and SPC25, respectively. (b) CA changes of pure cotton textile and the SPC/cotton textile with various SPC area densities. (c) Self-cleaning process of contaminants on the surface of SPC15. (d) The photograph of the peeling test with 3 M Scotch tape. (e) The photograph of water droplets on the SPC15 specimen after repeatedly peeling for 1000 cycles. (f-h) The photographs of water droplets on the SPC15 specimen at 10% strain, after stretching-release for 1000 cycles and after bending-release for 1000 cycles (2.0 mm bending radius), respectively. (i) CA changes of SPC15 before and after peeling for 1000 cycles, at 10% strain, after stretching-release for 1000 cycles and after bending-release for 1000 cycles, respectively.
Fig. 3. (a) Electrical conductivity of the SPC/cotton textile with various SPC area densities. The inset showing the ΔR/R0 changes of SPC15, SPC20 and SPC25 as a function of tensile strain. (b) ΔR/R0 changes of the SPC15 sensor with various terminal strains at a strain rate of 2 mm/min. (c) ΔR/R0 changes of the SPC15 sensor under a step increase and decrease strain at a strain rate of 2 mm/min. (d) ΔR/R0 changes of the SPC15 sensor at different tensile speeds with a terminal strain of 5%. (e) ΔR/R0 changes of the SPC15 sensor under stretching-release for 1000 cycles with a terminal strain of 5%. The insets showing the ΔR/R0 change curves from the red rectangle area.
Fig. 4. (a) Comparison of the GF of the SPC15 sensor under 0-10% strain with those of other reported strain sensors under small strains (< 20%). (b) Schematic diagram for the integration of superhydrophobicity on the SPC/cotton textile sensor.
Fig. 5. (a) SEM images of SPC15 at 0% strain. (b) SEM images of SPC15 at 10% strain. (c) SEM images of SPC15 after the strain being released back to 0%. (d-f) The corresponding magnified SEM images of (a-c). (g) Schematic illustration of the structure evolution for the SPC/cotton textile during one stretching-release cycle.
Fig. 6. (a) The response signals of SPC15 for detecting pulse. The insets were the photographs of the specimen attached at the wrist and the response signals from the brown region. (b) The response signals of SPC15 for detecting pronunciation of “Hi” and “Senor”. The inset was the photograph of the specimen attached on the throat. (c) The response signals of SPC15 for detecting facial expression. The insets were photographs of the specimen attached on the cheek. (d-f) The response signals of SPC15 for detecting human joint motions, including neck, wrist, and elbow. The insets showed the photographs of specimens during the corresponding motion states. (g) The response signals of SPC15 for detecting finger bending-releasing cycles at natural environment and after being immersed in water, acid, alkali and salt solutions, respectively. The insets showed the photographs of the specimen under the above test conditions.
| [1] |
C.S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M.S. Ferreira, M.E. Möbius, Science 354 (2016) 1257-1260.
PMID |
| [2] | Y.F. Fu, Y.Q. Li, Y.F. Liu, P. Huang, N. Hu, S.Y. Fu, ACS Appl. Mater. Interfaces 10 (2018) 35503-35509. |
| [3] |
Y. Lu, G. Yu, X. Wei, C. Zhan, J.W. Jeon, X. Wang, C. Jeffryes, Z. Guo, S. Wei, E.K. Wujcik, Adv. Compos. Hybrid Mater. 2 (2019) 711-719.
DOI URL |
| [4] | H. Huang, L. Han, Y. Wang, Z. Yang, F. Zhu, M. Xu, Eng. Sci. 9 (2019) 60-67. |
| [5] | J. Zhou, X. Guo, Z. Xu, Q. Wu, J. Chen, J. Wu, Y. Dai, L. Qu, Z. Huang, Compos. Sci. Technol. 197 (2020) 108215-108222. |
| [6] |
H. Wei, A. Li, D. Kong, Z. Li, D. Cui, T. Li, B. Dong, Z. Guo, Adv. Compos. Hybrid Mater. 4 (2021) 86-95.
DOI URL |
| [7] | Y.F. Su, G. Han, Z. Kong, T. Nantung, N. Lu, Eng. Sci. 11 (2020) 66-75. |
| [8] |
S. Bi, L. Hou, W. Dong, Y. Lu, ACS Appl. Mater. Interfaces 13 (2021) 2100-2109.
DOI URL |
| [9] | J.I. Park, D.K. Kim, J. Jang, I.M. Kang, H. Kim, J. Park, I.W. Nam, P. Lang, J.H. Bae, Compos. Sci. Technol. 200 (2020) 108471-108478. |
| [10] |
C. Shao, M. Wang, L. Meng, H. Chang, B. Wang, F. Xu, J. Yang, P. Wan, Chem. Mater. 30 (2018) 3110-3121.
DOI URL |
| [11] |
J.H. Pu, X.J. Zha, M. Zhao, S. Li, R.Y. Bao, Z.Y. Liu, B.H. Xie, M.B. Yang, Z. Guo, W. Yang, Nanoscale 10 (2018) 2191-2198.
DOI URL |
| [12] | L. Duan, D.R. D’Hooge, L. Cardon, Prog. Mater. Sci. 114 (2020) 100617-100656. |
| [13] | Y. Li, T. He, L. Shi, R. Wang, J. Sun, ACS Appl. Mater. Interfaces 12 (2020) 17691-17698. |
| [14] | J. Lin, X. Cai, Z. Liu, N. Liu, M. Xie, B. Zhou, H. Wang, Z. Guo ,Adv. Funct. Mater. 30 (2020) 2000398-2000408. |
| [15] | S. Choi, K. Yoon, S. Lee, H.J. Lee, J. Lee, D.W. Kim, M.S. Kim, T. Lee, C. Pang, Adv. Funct. Mater. 29 (2019) 1905808-1905816. |
| [16] | X. Zhou, L. Zhu, L. Fan, H. Deng, Q. Fu, ACS Appl. Mater. Interfaces 10 (2018) 31655-31663. |
| [17] | L. Li, H. Xiang, Y. Xiong, H. Zhao, Y. Bai, S. Wang, F. Sun, M. Hao, L. Liu, T. Li, Z. Peng, J. Xu, T. Zhang, Adv. Sci. 5 (2018) 1800558-1800566. |
| [18] | Y. Zhao, M. Ren, Y. Shang, J. Li, S. Wang, W. Zhai, G. Zheng, K. Dai, C. Liu, C. Shen, Compos. Sci. Technol. 200 (2020) 108448-108455. |
| [19] |
L.C. Jia, Y.F. Jin, J. Ren, L. Zhao, D.X. Yan, Z.M. Li, J. Mater. Chem. C 9 (2021) 2904-2911.
DOI URL |
| [20] | C.G. Zhou, W.J. Sun, L.C. Jia, L. Xu, K. Dai, D.X. Yan, Z.M. Li, ACS Appl. Mater. Interfaces 11 (2019) 37094-37102. |
| [21] | G. Cai, M. Yang, Z. Xu, J. Liu, B. Tang, X. Wang,Chem. Eng. J. 325 (2017) 396-403. |
| [22] | J.C. Luo, S.J. Gao, H. Luo, L. Wang, X.W. Huang, Z. Guo, X.J. Lai, L.W. Lin, R.K.Y. Li, J.F. Gao, Chem. Eng. J. 406 (2021) 126898-126908. |
| [23] | R. Zhang, S. Li, C. Ying, Z. Hu, A. Lv, H. Hu, X. Fu, S. Hu, Q. Liu, C.P. Wong, Compos. Sci. Technol. 200 (2020) 108319-108325. |
| [24] |
H. Li, J. Chen, X. Chang, Y. Xu, G. Zhao, Y. Zhu, Y. Li, J. Mater. Chem. A 9 (2021) 1795-1802.
DOI URL |
| [25] |
J. Wei, J. Xie, P. Zhang, Z. Zou, H. Ping, W. Wang, H. Xie, J.Z. Shen, L. Lei, Z. Fu, ACS Appl. Mater. Interfaces 13 (2021) 2952-2960.
DOI URL |
| [26] | L.C. Jia, X.X. Jia, W.J. Sun, Y.P. Zhang, L. Xu, D.X. Yan, H.J. Su, Z.M. Li, ACS Appl. Mater. Interfaces 12 (2020) 53230-53238. |
| [27] | G. Cai, J. Wang, K. Qian, J. Chen, S. Li, P.S. Lee, Adv. Sci. 4 (2017) 1600190-1600196. |
| [28] | G. Cai, J. Wang, M.F. Lin, J. Chen, M. Cui, K. Qian, S. Li, P. Cui, P.S. Lee, NPG Asia Mater. 9 (2017) 437 -437. |
| [29] |
T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin, J. Li, X. Li, J. Xu, Z. Li, H. Zhu, ACS Sens. 2 (2017) 967-974.
DOI URL |
| [30] |
K. Huang, S. Dong, J. Yang, J. Yan, Y. Xue, X. You, J. Hu, L. Gao, X. Zhang, Y. Ding, Carbon NY 143 (2019) 63-72.
DOI URL |
| [31] | L. Li, Y. Bai, L. Li, S. Wang, T. Zhang, Adv. Mater. 29 (2017) 1702517-1702524. |
| [32] | L. Wang, H. Wang, X.W. Huang, X. Song, M. Hu, L. Tang, H. Xue, J. Gao, J. Mater. Chem. A 6 (2018) 24523-24533. |
| [33] |
P. Wang, W. Wei, Z. Li, W. Duan, H. Han, Q. Xie, J. Mater. Chem. A 8 (2020) 3509-3516.
DOI URL |
| [34] |
L.C. Jia, G. Zhang, L. Xu, W.J. Sun, G.J. Zhong, J. Lei, D.X. Yan, Z.M. Li, ACS Appl. Mater. Interfaces 11 (2019) 1680-1688.
DOI URL |
| [35] |
L. Dashairya, A. Sahu, P. Saha, Adv. Compos. Hybrid Mater. 2 (2019) 70-82.
DOI URL |
| [36] |
G. Li, Z. Mai, X. Shu, D. Chen, M. Liu, W. Xu, Adv. Compos. Hybrid Mater. 2 (2019) 254-265.
DOI URL |
| [37] | C. Gao, W. Deng, F. Pan, X. Feng, Y. Li, Eng. Sci. 9 (2020) 35-43. |
| [38] |
L.C. Jia, W.J. Sun, L. Xu, J.F. Gao, K. Dai, D.X. Yan, Z.M. Li, Ind. Eng. Chem. Res. 59 (2020) 7546-7553.
DOI URL |
| [39] |
S. Sun, Y. Liu, X. Chang, Y. Jiang, D. Wang, C. Tang, S. He, M. Wang, L. Guo, Y. Gao, J. Mater. Chem. C 8 (2020) 2074-2085.
DOI URL |
| [40] | Q. Wu, S. Zou, F.P. Gosselin, D. Therriault, M.C. Heuzey, J. Mater. Chem. C 6 (2018) 12180-12186. |
| [41] |
L. Wang, Y. Chen, L. Lin, H. Wang, X. Huang, H. Xue, J. Gao, Chem. Eng. J. 362 (2019) 89-98.
DOI URL |
| [42] | S. Kumar, T.K. Gupta, K.M. Varadarajan, Compos. Part B 177 (2019) 107285-107297. |
| [43] | M. Zhang, C. Wang, Q. Wang, M. Jian, Y. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 20894-20899. |
| [44] |
Y. Zheng, Y. Li, Y. Zhou, K. Dai, G. Zheng, B. Zhang, C. Liu, C. Shen, ACS Appl. Mater. Interfaces 12 (2020) 1474-1485.
DOI URL |
| [45] | Y. Wang, J. Hao, Z. Huang, G. Zheng, K. Dai, C. Liu, C. Shen, Carbon 126 (2018) 360-371. |
| [46] | K. Ke, P. Pötschke, N. Wiegand, B. Krause, B. Voit, ACS Appl. Mater. Interfaces 8 (2016) 14190-14199. |
| [47] | H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Nanoscale 8 (2016) 12977-12989. |
| [48] |
P. Costa, J. Oliveira, L. Horta-Romaris, M.J. Abad, J. Agostinho Moreira, I. Za- pirain, M. Aguado, S. Galvan, S. Lanceros-mendez, Compos. Sci. Technol. 168 (2018) 353-362.
DOI URL |
| [49] | S. Gong, D. T.H. Lai, B. Su, K.J. Si, Z. Ma, L.W. Yap, P. Guo, W. Cheng, Adv. Elec- tron. Mater. 1 (2015) 1400063-1400069. |
| [50] |
M.M. Ali, D. Maddipatla, B.B. Narakathu, A.A. Chlaihawi, S. Emamian, F. Jan- abi, B.J. Bazuin, M.Z. Atashbar, Sens. Actuators A Phys. 274 (2018) 109-115.
DOI URL |
| [51] | K. Huang, H. Ning, N. Hu, F. Liu, X. Wu, S. Wang, Y. Liu, R. Zou, W. Yuan, L. Wu, Compos. Sci. Technol. 192 (2020) 108105-108113. |
| [52] | Y. Jiang, Z. Liu, N. Matsuhisa, D. Qi, W.R. Leow, H. Yang, J. Yu, G. Chen, Y. Liu, C. Wan, Z. Liu, X. Chen, Adv. Mater. 30 (2018) 1706589-1706595. |
| [1] | Taegun Kim, Chanwoo Park, Edmund P. Samuel, Yong-Il Kim, Seongpil An, Sam S. Yoon. Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric [J]. J. Mater. Sci. Technol., 2022, 100(0): 254-264. |
| [2] | Haiting Wei, Shuiyuan Yang, Cuiping Wang, Changrui Qiu, Kairui Lin, Jiajia Han, Yong Lu, Xingjun Liu. Novel and durable composite phase change thermal energy storage materials with controllable melting temperature [J]. J. Mater. Sci. Technol., 2021, 86(0): 11-19. |
| [3] | Jiajia Tian, Kangwei Xu, Junhua Hu, Shijie Zhang, Guoqin Cao, Guosheng Shao. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design [J]. J. Mater. Sci. Technol., 2021, 79(0): 62-74. |
| [4] | Fen Zhang, Changlei Zhang, Liang Song, Rongchang Zeng, Shuoqi Li, Hongzhi Cui. Fabrication of the Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Resistance [J]. J. Mater. Sci. Technol., 2015, 31(11): 1139-1143. |
| [5] | Y.P. Li, M.K. Lei. Nanotexturing and Wettability Ageing of Polypropylene Surfaces Modified by Oxygen Capacitively Coupled Radio Frequency Plasma [J]. J. Mater. Sci. Technol., 2014, 30(10): 965-972. |
| [6] | Ailan QU, Xiufang WEN, Pihui PI, Jiang CHENG, Zhuoru YANG. Morphologies and Superhydrophobicity of Hybrid Film Surfaces Based on Silica and Fluoropolymer [J]. J Mater Sci Technol, 2008, 24(05): 693-699. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
