J. Mater. Sci. Technol. ›› 2022, Vol. 110: 246-259.DOI: 10.1016/j.jmst.2021.06.084
• Research Article • Previous Articles Next Articles
Qing Liua,b, Yi Zhanga, Yibin Liua,b, Chunmei Lia,b, Zongxu Liua,b, Baoliang Zhanga,b, Qiuyu Zhanga,b,*()
Received:
2021-04-20
Revised:
2021-06-15
Accepted:
2021-06-20
Published:
2021-10-30
Online:
2021-10-30
Contact:
Qiuyu Zhang
About author:
* Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China. E-mail address: qyzhang@nwpu.edu.cn (Q. Zhang).Qing Liu, Yi Zhang, Yibin Liu, Chunmei Li, Zongxu Liu, Baoliang Zhang, Qiuyu Zhang. Magnetic field-induced strategy for synergistic CI/Ti3C2Tx/PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance[J]. J. Mater. Sci. Technol., 2022, 110: 246-259.
Fig. 1. (a) Schematic illustration of preparation flow for few-layered Ti3C2Tx nanoflakes via raw MAX etching (i) and delamination (ii, iii). XRD spectra showing the phase transition from MAX to the delaminated nanosheets (iv). (b) Illustration of multiple H-bonding interactions with F element on the PVDF molecular chain. (c) TEM image of Ti3C2Tx nanosheets overlapped and inset pattern showed SAED diagram. (d) HADDF TEM images and the element mapping for Ti, O and F. (e) AFM pattern of a single-layered Ti3C2Tx nanosheet and the height profile along the dash line cross the nanosheet. (f) SEM image of the elliptical carbonyl irons.
Fig. 2. (a) Schematic illustration of the fabrication flow for DCMP composite films via casting and sequentially hot-pressing process. Red cycle marked the migration of CI platelets to form a CI agglomeration layer in response to the magnetic field. Optical images of the (b) homogeneous CMP20-10 film and (c) magnetic field-induced (m-DCMP) composites. i and ii presented the two sides of the films, showing the different morphology depending on the film processing. (d) The 0.2 mm-thick DCMP obtained from the hot-pressing of 3 sheets of m-DCMP films and the flexibly bending behavior.
Fig. 3. High magnification cross-sectional SEM images of selected areas for (a) homogeneous CMP20-10 and (b) m-DCMP15-10 asymmetric film. (c) DCMP20-10 composite film (three sheets of m-DCMP20-10 hot-pressed). i, ii and iii SEM images highlighted the selected areas for the CI-rich layers of the top, middle and bottom DCMP20-10 films, respectively.
Fig. 4. (a) XRD profiles of DCMP composite films (selected) with the peaks assigned with the help of pure PVDF, CI particles and the Ti3C2Tx nanosheet films. (b) Magnetization hysteresis loops of the DCMP composite films. Inset figure was the hysteresis loop of the pure CI powder.
Fig. 5. (a) Electrical conductivity plotted with the mass loading of Ti3C2Txnanosheets for different composites. (b) Electrical conductivity of DCMP films versus various CI particle amounts with fixed 10 wt% Ti3C2Tx. Figure inset illustrated the electrical conductive pathway assembled by Ti3C2Txnanosheets which were excluded by CI agglomerations in CI-rich layers.
Fig. 6. Mechanical behavior of the as-prepared composite films. (a) Stress-strain curves for the DCMP composite films together with hot-pressed pure PVDF and MP-10 films. (b) Bar chart in terms of tensile strength, Young's modulus and elongation rate for DCMP and PVDF-based composites. (c) Collective tensile strength of HMP, CMP and DCMP composites versus filler amounts.
Fig. 7. (a) EMI SE profiles of MP and CP composites compared with sandwiched MCMP and MCMCP composite films in a thickness of 0.2 mm within X-band. The structure of multilayered composite films were illustrated as figure inset. The filler content of electric conductive layer and magnetic film were 10 wt% Ti3C2Tx and 20 wt% CI particles, respectively. (b) EMI SE values at 8.2 GHz of MP and CMP composite films with CI mass loading of 15 and 20 wt% as versus Ti3C2Tx filler content. The discrete EMI SE data of CMP10-5 and CMP10-10 composites were to examine the coupling effect with addition of CI filler content.
Fig. 8. (a) EMI SE profiles of the as-prepared composite kinds over the frequency range. (b) Bar chart of SER, SEA and total SET parameters for the as-prepared composite kinds picked up at 8.2 GHz. (c) R, T and A coefficient for various composites.
Fig. 9. Frequency dependence of dielectric (a) and magnetic loss (b) for multilayered DCMP composites. Tan δε +tan δμ versus frequency within the range of X-band for DCMP composite (c).
Fig. 10. (a) EMI SE profiles of DCMP composite with various CI loading amounts in a thickness of 0.2 mm. (b) SER, SEA and total SET of DCMP composites plotted versus CI mass loading up to 20 wt%. (c) R, T and A coefficient for DCMP composites with discrepant CI mass loading. (d) Schematic illustration of electromagnetic shielding mechanism concerning the composite structure.
Fig. 11. (a) Thickness dependence of EMI SE profiles for DCMP20-10 films over the frequency range of 8.2~12.4 GHz. (b) EMI SE profiles of the DCMP20-10 samples with different layer numbers. (c) SER, SEA and total SET of DCMP20-10 samples containing different layer numbers in the total thickness of 0.2 mm. (d) Thickness specific EMI SE values of the DCMP composites versus their thickness and the previously reported high efficiency EMI shielding composites. The references used for comparison in the figure were listed in Table S3 according to the reference numbers.
[1] |
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, Chem. Eng. J. 359 (2019) 1265-1302.
DOI URL |
[2] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (6304) (2016) 1137-1140.
DOI PMID |
[3] |
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, Z Guang Chem. Eng. J. 368 (2019) 285-298.
DOI URL |
[4] |
X. Zhou, Z. Jia, A. Feng, X. Wang, J. Liu, M. Zhang, H. Cao, G. Wu, Carbon NY 152 (2019) 827-836.
DOI URL |
[5] | M. Han, X. Yin, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, ACS Appl. Mater. Interfaces 9 (13) (2017) 11803-11810. |
[6] | B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, C.B. Park, ACS Appl. Mater. Interfaces 9 (24) (2017) 20873-20884. |
[7] | L. Wang, L. Chen, P. Song, C. Liang, Y. Lu, H. Qiu, Y. Zhang, J. Kong, J Gu, Com- pos. Part B Eng. 171 (2019) 111-118. |
[8] |
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, ACS Nano 12 (5) (2018) 4583-4593.
DOI URL |
[9] |
W. Zhou, L. Xu, L. Jiang, J. Peng, Y. Gong, X. Liu, H. Cai, G. Wang, Q. Chen, J. Alloy. Compd. 710 (2017) 47-56.
DOI URL |
[10] |
D. Chen, H. Quan, Z. Huang, S. Luo, X. Luo, F. Deng, H. Jiang, G. Zeng, Compos. Sci. Technol. 102 (2014) 126-131.
DOI URL |
[11] |
J. Prasad, A.K. Singh, K.K. Haldar, V. Gupta, K. Singh, J. Alloy. Compd. 788 (2019) 861-872.
DOI URL |
[12] | Z. Jia, K. Kou, S. Yin, A. Feng, C. Zhang, X. Liu, H. Cao, G. Wu, Compos. Part B Eng. 189 (2020) 107895. |
[13] | L. Liang, P. Xu, Y. Wang, Y. Shang, J. Ma, F. Su, Y. Feng, C. He, Y. Wang, C. Liu, Chem. Eng. J. 395 (2020) 125209. |
[14] |
W. Xu, G.S. Wang, P.G. Yin, Carbon N Y 139 (2018) 759-767.
DOI URL |
[15] |
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z Zhang, Adv. Funct. Mater. 26 (2) (2016) 303-310.
DOI URL |
[16] |
X. Fan, G. Zhang, Q. Gao, J. Li, Z. Shang, H. Zhang, Y. Zhang, X. Shi, J. Qin, Chem. Eng. J. 372 (2019) 191-202.
DOI URL |
[17] |
X.J. Zha, J.H. Pu, L.F. Ma, T. Li, R.Y. Bao, L. Bai, Z.Y. Liu, M.B. Yang, W. Yang, Compos. Part A 105 (2018) 118-125.
DOI URL |
[18] |
B. Zhao, S. Wang, C. Zhao, R. Li, S.M. Hamidinejad, Y. Kazemi, C.B. Park, Carbon NY 127 (2018) 469-478.
DOI URL |
[19] |
J.M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mater. Sci. Eng. R Rep. 74 (7) (2013) 211-232.
DOI URL |
[20] | J.G. Park, J. Louis, Q. Cheng, J. Bao, J. Smithyman, R. Liang, B. Wang, C. Zhang, J.S. Brooks, L. Kramer, Nanotechnology 20 (41) (2009) 415702. |
[21] |
K.Y. Park, S.E. Lee, C.G. Kim, J.H. Han, Compos. Sci. Technol. 66 (3-4) (2006) 576-584.
DOI URL |
[22] |
Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai, X. Wei, W. Zheng, Compos. Sci. Technol. 138 (2017) 209-216.
DOI URL |
[23] |
M. Chen, Y. Zhu, Y. Pan, H. Kou, H. Xu, J Guo, Mater. Des. 32 (5) (2011) 3013-3016.
DOI URL |
[24] |
D. Min, W. Zhou, Y. Qing, F. Luo, D. Zhu, J. Alloy. Compd. 744 (2018) 629-636.
DOI URL |
[25] |
D. Min, W. Zhou, Y. Qing, F. Luo, D. Zhu, J. Mater. Sci. 52 (4) (2017) 2373-2383.
DOI URL |
[26] | Y. Zhai, D. Zhu, X. Ruan, F. Luo, J. Mater. Sci. Mater. Electron. 31 (24) (2020) 22768-22779. |
[27] |
Z. Zhu, X. Sun, H. Xue, H. Guo, X. Fan, X. Pan, J. He ,J. Mater. Chem. C 2 (32) (2014) 6582-6591.
DOI URL |
[28] |
R. Li, T. Wang, G. Tan, W. Zuo, J. Wei, L. Qiao, F. Li, J. Alloy. Compd. 586 (2014) 239-243.
DOI URL |
[29] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (37) (2011) 4248-4253.
DOI URL |
[30] | S.A. Mirkhani, A. Shayesteh Zeraati, E. Aliabadian, M. Naguib, U. Sundararaj, ACS Appl. Mater. Interfaces 11 (20) (2019) 18599-18608. |
[31] |
Z. Liu, W. Wang, J. Tan, J. Liu, M. Zhu, B. Zhu, Q. Zhang, J. Mater. Chem. C 8 (21) (2020) 7170-7180.
DOI URL |
[32] |
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, X. Feng, ACS Appl. Mater. Interfaces 10 (51) (2018) 44787-44795.
DOI URL |
[33] | Q. Liu, Y. Zhang, Y. Liu, Z. Liu, B. Zhang, Q. Zhang, J. Alloy. Compd. 860 (2021) 158151. |
[34] | L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou, Y. Feng, J. Ma, Y. Wang, R. Zhang, C. Liu, ACS Appl. Mater. Interfaces 11 (28) (2019) 25399-25409. |
[35] |
Z. Wang, Z. Cheng, L. Xie, X. Hou, C. Fang, Ceram. Int. 47 (4) (2021) 5747-5757.
DOI URL |
[36] | A. Iqbal, P. Sambyal, C.M. Koo, Adv. Funct. Mater. 30 (47) (2020) 2000883. |
[37] |
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 29 (18) (2017) 7633-7644.
DOI URL |
[38] | A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, A. Sinitskii, Sci. Adv. 4 (6) (2018) eaat0491. |
[39] | W.S. Jou, H.Z. Cheng, C.F. Hsu, J. Alloy. Compd. 434 (2007) 641-645. |
[40] |
D. Yuping, L. Shunhua, G. Hongtao, Sci. Technol. Adv. Mater. 6 (5) (2005) 513.
DOI URL |
[41] |
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, ACS Nano 8 (5) (2014) 5154-5163.
DOI URL |
[42] |
N. Hu, Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Acta Mater. 56 (13) (2008) 2929-2936.
DOI URL |
[43] | S. Tu, Q. Jiang, J. Zhang, X. He, M.N. Hedhili, X. Zhang, H.N. Alshareef, ACS Appl. Mater. Interfaces 11 (30) (2019) 27358-27362. |
[44] |
S. Tu, Q. Jiang, X. Zhang, H.N. Alshareef, ACS Nano 12 (4) (2018) 3369-3377.
DOI URL |
[45] | M. Farhadi-Khouzani, C. Schütz, G.M. Durak, J. Fornell, J. Sort, G. Salazar-Al- varez, L. Bergström, D. Gebauer, J. Mater. Chem. A 5 (31) (2017) 16128-16133. |
[46] |
Y.Q. Li, T. Yu, T.Y. Yang, L.X. Zheng, K. Liao, Adv. Mater. 24 (25) (2012) 3426-3431.
DOI URL |
[47] |
Y. Danlée, C. Bailly, I. Huynen, Compos. Sci. Technol. 100 (2014) 182-188.
DOI URL |
[48] | G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Adv. Funct. Mater. 28 (44) (2018) 1803360. |
[49] |
Z. Wang, R. Wei, X. Liu, ACS Appl. Mater. Interfaces 9 (27) (2017) 22408-22419.
DOI URL |
[50] | Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu, Y. Lei, C.B. Park, ACS Appl. Mater. Inter- faces 12 (32) (2020) 36568-36577. |
[51] |
X. Liu, X. Cui, Y. Chen, X.J. Zhang, R. Yu, G.S. Wang, H. Ma, Carbon NY 95 (2015) 870-878.
DOI URL |
[52] |
C. Lee, H. Song, K. Jang, E. Oh, A. Epstein, J Joo, Synth. Met. 102 (1-3) (1999) 1346-1349.
DOI URL |
[1] | Lulu Zhang, Junchen Luo, Shu Zhang, Jun Yan, Xuewu Huang, Ling Wang, Jiefeng Gao. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 98(0): 62-71. |
[2] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
[3] | Xun Fan, Fengchao Wang, Qiang Gao, Yu Zhang, Fei Huang, Ronglin Xiao, Jianbin Qin, Han Zhang, Xuetao Shi, Guangcheng Zhang. Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 177-185. |
[4] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
[5] | Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding [J]. J. Mater. Sci. Technol., 2021, 72(0): 154-161. |
[6] | Xuan Hao, Xiaowei Yin, Litong Zhang, Laifei Cheng. Dielectric, Electromagnetic Interference Shielding and Absorption Properties of Si3N4-PyC Composite Ceramics [J]. J. Mater. Sci. Technol., 2013, 29(3): 249-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||