J. Mater. Sci. Technol. ›› 2021, Vol. 87: 83-94.DOI: 10.1016/j.jmst.2021.01.057
• Research Article • Previous Articles Next Articles
Jie Songa, Jun Lia, Xiangren Baia, Liang Kangb, Liying Maa, Naiqin Zhaoa, Shuilin Wua, Yuan Xueb, Jiajun Lia, Xiaojian Jic, Junwei Shaa,*()
Received:
2020-09-19
Revised:
2020-11-05
Accepted:
2021-01-19
Published:
2021-10-10
Online:
2021-03-17
Contact:
Junwei Sha
About author:
* E-mail address: shajw@tju.edu.cn (J. Sha).Jie Song, Jun Li, Xiangren Bai, Liang Kang, Liying Ma, Naiqin Zhao, Shuilin Wu, Yuan Xue, Jiajun Li, Xiaojian Ji, Junwei Sha. Cu nanoparticle-decorated two-dimensional carbon nanosheets with superior photothermal conversion efficiency of 65 % for highly efficient disinfection under near-infrared light[J]. J. Mater. Sci. Technol., 2021, 87: 83-94.
Fig. 2. (a1-d3) SEM and TEM images; (e) Schematic illustration; (f) XRD patterns and (g) Raman spectra of 2D C, 2D C/Cu1, 2D C/Cu2, and 2D C/Cu3. The values of scale bars in a1, b1 and c1 are the same as that in d1. Similarly, the values of scale bars in a2, b2, and c2 are the same as that in d2, and the values in a3, b3, and c3 are the same as that in d3.
Fig. 3. Photothermal performance. (a) Vis-NIR absorbance spectra (400-1000 nm) of aqueous suspensions of dispersed 2D C at varied concentrations (25, 50,100, 200 and 400 p.p.m.); (b) Photothermal heating curves of aqueous suspensions of dispersed 2D C (100 p.p.m.) under 808 nm laser irradiation at varied power densities (0.5, 1.0 and 1.5 W cm-2); (c) Photothermal heating curves of aqueous suspensions of dispersed 2D C under 808 nm laser irradiation (1.0 W cm-2) at varied concentrations (50, 100 and 200 p.p.m.); (d) Recycling heating profiles of 100 p.p.m. of 2D C under 808 nm laser irradiation (1.0 W cm-2) for three on/off cycles; (e) Calculation of the photothermal-conversion efficiency (η) of 2D C at 808 nm. Black line: photothermal effect for certain periods, and then the laser is turned off. Red line: time constant (τs) from the cooling period by using the linear time data.
Fig. 4. (a-c) Calculation of the photothermal-conversion efficiency (η) of 2D C/Cu1, 2D C/Cu2, and 2D C/Cu3 at 808 nm. Black line: photothermal effect for certain periods, and then the laser is turned off. Red line: time constant (τs) from the cooling period by using the linear time data; (d) Photothermal conversion efficiency (η) of various carbon-based photothermal agents in the literatures.
Fig. 5. Ions release behavior. Cumulative Cu2+ release curves of 2D C/Cu1, 2D C/Cu2, and 2D C/Cu3 (200 p.p.m.) at 37 °C in PBS for (a) short-term release (1 day) and (b) long-term release (4 weeks). Error bars indicate means ± standard deviations (n = 2 independent samples). Source data are provided as a Source Data file.
Fig. 6. Antibacterial activity in vitro. (a) E. coli and S. aureus bacteria treated with 2D C, 2D C/Cu1, 2D C/Cu2, and 2D C/Cu3 (200 p.p.m.), respectively, then kept in the dark for 12 h, spread onto LB agar plates and incubated at 37 °C for 24 h; (b, c) statistical results of the corresponding antibacterial activity (b: E. coli, and c: S. aureus). Error bars indicate means ± standard deviations (n = 3 biologically independent samples): *P < 0.05, **P < 0.01, and ***P < 0.001 (t-test).
Fig. 7. Antibacterial activity in vitro. (a) E. coli, S. Aureus, and MRSA bacteria treated with 2D C/Cu2 (200 p.p.m.) through different treatment, including Light and Light + Dark, then spread onto LB agar plates and incubated at 37 °C for 24 h; (b) Corresponding amounts of Cu2+ releases after light for 10 min under 808 nm laser irradiation; (c-e) statistical results of the corresponding antibacterial activity (c: E. coli, d: S. aureus, and e: MRSA). Error bars indicate means ± standard deviations (n = 3 biologically independent samples): *P < 0.05, **P < 0.01, and ***P < 0.001 (t-test).
Fig. 8. Antibacterial mechanism. TEM images of ultrathin section and corresponding EDS of MRSA treated with 2D C/Cu2 for Dark and Light + Dark group (scale bars = 200 nm).
Fig. 9. Cellular morphology and viability. (a) Fluorescent images of NIH-3T3 cells after co-cultured with 2DC, 2D C/Cu1, 2D C/Cu2, and 2D C/Cu3, and followed by incubation for 24 h at 37 °C; F-actin stained with TRITC Phalloidin (red) and nucleus stained with DAPI (blue). (b) Cell viability of NIH-3T3 cells cultured with 2D C, 2D C/Cu1, 2D C/Cu2, and 2D C/Cu3 (50, 100 and 200 p.p.m.) for 1, 3, and 7 days. Error bars indicate means ± standard deviations (n = 3 biologically independent samples): *P < 0.05, **P < 0.01, ***P < 0.001 (t-test).
[1] |
A. Luther, M. Urfer, M. Zahn, M. Muller, S.Y. Wang, M. Mondal, A. Vitale, J.B. Hartmann, T. Sharpe, F.L. Monte, H. Kocherla, E. Cline, G. Pessi, P. Rath, S.M. Modaresi, P. Chiquet, S. Stiegeler, C. Verbree, T. Remus, M. Schmitt, C. Kolopp, M.A. Westwood, N. Desjonqueres, E. Brabet, S. Hell, K. LePoupon, A. Vermeulen, R. Jaisson, V. Rithie, G. Upert, A. Lederer, P. Zbinden, A. Wach, K. Moehle, K. Zerbe, H.H. Locher, F. Bernardini, G.E. Dale, L. Eberl, B. Wollscheid, S. Hiller, J.A. Robinson, D. Obrecht, Nature 576 (2019) 452-458.
DOI URL |
[2] |
W. Kim, W. Zhu, G.L. Hendricks, D. Van Tyne, A.D. Steele, C.E. Keohane, N. Fricke, A.L. Conery, S. Shen, W. Pan, K. Lee, R. Rajamuthiah, B.B. Fuchs, P.M. Vlahovska, W.M. Wuest, M.S. Gilmore, H. Gao, F.M. Ausubel, E. Mylonakis, Nature 556 (2018) 103-107.
DOI URL |
[3] |
A.R. Brochado, A. Telzerow, J. Bobonis, M. Banzhaf, A. Mateus, J. Selkrig, E. Huth, S. Bassler, J. Zamarreno Beas, M. Zietek, N. Ng, S. Foerster, B. Ezraty, B. Py, F. Barras, M.M. Savitski, P. Bork, S. Gottig, A. Typas, Nature 559 (2018) 259-263.
DOI URL |
[4] |
S. Baker, N. Thomson, F.-X. Weill, K.E. Holt, Science 360 (2017) 733-738.
DOI URL |
[5] | Y. Liu, P. Bai, A.K. Woischnig, G. Charpin-El Hamri, H. Ye, M. Folcher, M. Xie, N. Khanna, M. Fussenegger, Cell 174 (2018) 259-270e211. |
[6] |
J.W. Xu, K. Yao, Z.K. Xu, Nanoscale 11 (2019) 8680-8691.
DOI URL |
[7] |
Y. Yang, P. He, Y. Wang, H. Bai, S. Wang, J.F. Xu, X. Zhang, Angew. Chem. Int. Ed. Engl. 56 (2017) 16239-16242.
DOI URL |
[8] | Y. Yang, L. Ma, C. Cheng, Y. Deng, J. Huang, X. Fan, C. Nie, W. Zhao, C. Zhao, Adv. Funct. Mater. 28 (2018). |
[9] | Y. Weng, S. Guan, L. Wang, H. Lu, X. Meng, G.I.N. Waterhouse, S. Zhou, Small 16(2020), e1905184. |
[10] | Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram, A. Batool, L. Tian, S.U. Jan, R. Boddula, B. Guo, Q. Liu, J.R. Gong, Adv. Mater. 31 (2019), e1804838. |
[11] | H.E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, F. Liu, Y. Chen, Adv. Healthc. Mater. 7 (2018), e1701406. |
[12] |
W. Qian, C. Yan, D. He, X. Yu, L. Yuan, M. Liu, G. Luo, J. Deng, Acta Biomater. 69 (2018) 256-264.
DOI PMID |
[13] |
C. Liang, S. Diao, C. Wang, H. Gong, T. Liu, G. Hong, X. Shi, H. Dai, Z. Liu, Adv. Mater. 26 (2014) 5646-5652.
DOI URL |
[14] |
X. Dai, Y. Zhao, Y. Yu, X. Chen, X. Wei, X. Zhang, C. Li, Nanoscale 10 (2018) 18520-18530.
DOI URL |
[15] |
R. Liu, X. Wang, J. Ye, X. Xue, F. Zhang, H. Zhang, X. Hou, X. Liu, Y. Zhang, Nanotechnology 29 (2018), 105704.
DOI URL |
[16] |
Y. Feng, Q. Chen, Q. Yin, G. Pan, Z. Tu, L. Liu, ACS Appl. Bio Mater. 2 (2019) 747-756.
DOI URL |
[17] |
M. Ha, J.H. Kim, M. You, Q. Li, C. Fan, J.M. Nam, Chem. Rev. 119 (2019) 12208-12278.
DOI URL |
[18] | M.M. Rahman, Z.-T. Jiang, C.-Y. Yin, L.S. Chuah, H.-L. Lee, A. Amri, B.-M. Goh, B.J. Wood, C. Creagh, N. Mondinos, M. Altarawneh, B.Z. Dlugogorski, J. Mater. Sci. Technol. 32 (2016) 1179-1191. |
[19] |
W.S. Jung, J. Colloid Interface Sci. 514 (2018) 30-39.
DOI URL |
[20] |
X. Gu, Y. Zhao, K. Sun, C. L.Z.Vieira, Z. Jia, C. Cui, Z. Wang, A. Walsh, S. Huang, Ultrason. Sonochem. 58 (2019), 104630.
DOI URL |
[21] |
R. Zhang, L. Hu, S. Bao, R. Li, L. Gao, R. Li, Q. Chen, J. Mater. Chem. A 4 (2016) 8412-8420.
DOI URL |
[22] |
Z. Hasan, J. Cho, J. Rinklebe, Y.S. Ok, D.-W. Cho, H. Song,, J. Ind. Eng. Chem. 52 (2017) 331-337.
DOI URL |
[23] |
G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Nat. Commun. 7 (2016) 10601.
DOI URL |
[24] | Q. Yu, Y. Lu, R. Luo, X. Liu, K. Huo, Adv. Funct. Mater. 28(2018). |
[25] |
S.C. Li, B.C. Hu, Y.W. Ding, H.W. Liang, C. Li, Z.Y. Yu, Z.Y. Wu, W.S. Chen, S.H. Yu, Angew. Chem. Int. Ed. Engl. 57 (2018) 7085-7090.
DOI URL |
[26] |
L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Nano Energy 57 (2019) 507-518.
DOI URL |
[27] |
D. Jaque, L. Martinez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J.L. Plaza, E. Martin Rodriguez, J. Garcia Sole, Nanoscale 6 (2014) 9494-9530.
DOI PMID |
[28] |
H. Yu, L. Shang, T. Bian, R. Shi, G.I. Waterhouse, Y. Zhao, C. Zhou, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 28 (2016) 5080-5086.
DOI URL |
[29] |
K. Hu, L. Xie, Y. Zhang, M. Hanyu, Z. Yang, K. Nagatsu, H. Suzuki, J. Ouyang, X. Ji, J. Wei, H. Xu, O.C. Farokhzad, S.H. Liang, L. Wang, W. Tao, M.R. Zhang, Nat. Commun. 11 (2020) 2778.
DOI URL |
[30] |
S. Chen, F. Tang, L. Tang, L. Li, ACS Appl. Mater. Interfaces 9 (2017) 20895-20903.
DOI URL |
[31] |
Y. Li, L. Liu, P. Wan, Z. Zhai, Z. Mao, Z. Ouyang, D. Yu, Q. Sun, L. Tan, L. Ren, Z. Zhu, Y. Hao, X. Qu, K. Yang, K. Dai, Biomaterials 106 (2016) 250-263.
DOI PMID |
[32] | S. Jiang, T. Sreethawong, S.S.C. Lee, M.B.J. Low, K.Y. Win, A.M. Brzozowska, S.L.-M. Teo, G.J. Vancso, D. Ja´ nczewski, M.-Y. Han, Adv. Mater. Interfaces 2 (2015). |
[33] |
I.A. Mudunkotuwa, J.M. Pettibone, V.H. Grassian, Environ. Sci. Technol. 46 (2012) 7001-7010.
DOI PMID |
[34] |
Q. Xu, M. Chang, Y. Zhang, E. Wang, M. Xing, L. Gao, Z. Huan, F. Guo, J. Chang, ACS Appl. Mater. Interfaces 12 (2020) 31255-31269.
DOI URL |
[35] | Y.Y. Liu, T.H. Tung, K.H. Liu, S.Y. Chen, D.-M. Liu, Adv.Eng. Mater. 11 (2009) B219-B226. |
[36] |
B. Tao, C. Lin, Y. Deng, Z. Yuan, X. Shen, M. Chen, Y. He, Z. Peng, Y. Hu, K. Cai, J. Mater. Chem. B 7 (2019) 2534-2548.
DOI URL |
[1] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[2] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[3] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
[4] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
[5] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
[6] | Muhammad Ali Siddiqui, Ihsan Ullah, Hui Liu, Shuyuan Zhang, Ling Ren, Ke Yang. Preliminary study of adsorption behavior of bovine serum albumin (BSA) protein and its effect on antibacterial and corrosion property of Ti-3Cu alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 117-127. |
[7] | Tian Wan, Kangjie Chu, Ju Fang, Chuanxin Zhong, Yiwen Zhang, Xiang Ge, Yonghui Ding, Fuzeng Ren. A high strength, wear and corrosion-resistant, antibacterial and biocompatible Nb-5 at.% Ag alloy for dental and orthopedic implants [J]. J. Mater. Sci. Technol., 2021, 80(0): 266-278. |
[8] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
[9] | Jialiang Zhou, Yaping Wang, Weinan Pan, Hengxue Xiang, Peng Li, Zhe Zhou, Meifang Zhu. High thermal stability Cu2O@OZrP micro-nano hybrids for melt-spun excellent antibacterial activity polyester fibers [J]. J. Mater. Sci. Technol., 2021, 81(0): 58-66. |
[10] | Zhuo Chen, Shun Chen, Yufei Xiong, Yuping Yang, Yang Zhang, Lijie Dong. Flexible coatings with microphase separation structure attained by copolymers and ultra-fine nanoparticles for endurable antifouling [J]. J. Mater. Sci. Technol., 2021, 82(0): 179-186. |
[11] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[12] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[13] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[14] | Diangeng Cai, Xiaotong Zhao, Lei Yang, Renxian Wang, Gaowu Qin, Da-fu Chen, Erlin Zhang. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81(0): 13-25. |
[15] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||