J. Mater. Sci. Technol. ›› 2021, Vol. 80: 244-258.DOI: 10.1016/j.jmst.2020.05.078
• Research Article • Previous Articles Next Articles
S.Y. Wanga,b, Y. Suna,*(), C.Y. Cuia, X.F. Suna, Y.Z. Zhoua,*(
), Y.M. Mac, H.L. Anc
Received:
2020-02-27
Accepted:
2020-05-27
Published:
2020-08-08
Online:
2020-08-08
Contact:
Y. Sun,Y.Z. Zhou
About author:
yzzhou@imr.ac.cn (Y.Z. Zhou).S.Y. Wang, Y. Sun, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Y.M. Ma, H.L. An. Effect of post-bond heat treatment on the microstructure and high temperature mechanical property of a TLP bonded γ′-strengthened co-based single crystal superalloy[J]. J. Mater. Sci. Technol., 2021, 80: 244-258.
Material | Ni | Cr | W | Al | Ta | Co | B |
---|---|---|---|---|---|---|---|
Co-base superalloy | 13-15 | 3-5 | 13-15 | 4-6 | 7-9 | Bal. | <0.1 |
B-Ni76CrWB | Bal. | 13-15 | 6-8 | <0.1 | <0.1 | <0.1 | 3-5 |
Table 1 Compositions of the Co-based superalloy and B-Ni76CrWB powder (wt.%).
Material | Ni | Cr | W | Al | Ta | Co | B |
---|---|---|---|---|---|---|---|
Co-base superalloy | 13-15 | 3-5 | 13-15 | 4-6 | 7-9 | Bal. | <0.1 |
B-Ni76CrWB | Bal. | 13-15 | 6-8 | <0.1 | <0.1 | <0.1 | 3-5 |
Fig. 3. SEM images showing the different areas of the TLP joints of the as-bond joint and the two post-bond heat treated joints. (a), (d) and (g) HT1; (b), (e) and (h) HT2; (c), (f) and (i) HT3.
Fig. 4. Comparison of the size, area fractions and shape parameters of the γ′ phase in different zones of the TLP joint before and after the PBHTs. (a) Area fraction. (b) Average radius of γ′ phase. (c) Shape parameters of the γ′ phase in different bonding samples. Herein, the shape parameter of the γ′ phase in DAZ is not counted, as it is affected greatly by the boride.
Fig. 8. Area fractions of DAZ-borides. (a) AFs of borides in the whole DAZs of HT1, HT2 and HT3. (b) AF versus distance: comparison of partial area fraction of DAZ-borides at different positions of HT2 and HT3. The interface of ISZ/DAZ is set as origin.
Fig. 9. Confocal scanning laser microscope images showing the evolution of DAZ-borides at different temperature. (a)-(f) Heating process; (g)-(l) Cooling process.
Fig. 10. Microstructure of the DAZ-borides under different PBHT parameters. (a) 1100 °C /100 h. (b) 1100 °C /500 h. (c)-(d) 1260 °C /10 h. (e) 1280 °C /2 h. (f) Morphology of the boride away from the ISZ.
Fig. 11. Schematic illustrating the evolution of DAZ-borides during the high temperature (1280 °C) post-bond heat treatment. (a) Heating process ( T<1270 °C). (b) Heating process (T = 1270 °C). (c) Holding process ( T>1270 °C). (d) Cooling process (T<1270 °C).
Fig. 12. Distribution of boron concentration: comparison of theoretical models with experimental results. (a) Schematic showing the theoretical model. (b) Theoretical models versus experimental results.
Fig. 14. SEM images illustrating the longitudinal-section fractures of the TLP joints after the high temperature tensile tests. (a) HT1; (b) HT2; (c)-(f) HT3.
Fig. 16. SEM images illustrating the ISZ-SBs of different joints, and TEM image showing the pile-up of dislocations. (a) HT1; (b) HT3; (c) HT2; (d) TEM images showing the deformation microstructure of the SB in HT2.
Fig. 17. Schematics illustrating the fracture mechanisms of different joints. (a) HT1, coalescence of cracks coming from the SB and borides; (b) HT2, coalescence of BICs; (c) HT3, movement of dislocations at high temperature promotes the formation of microvoids, which leads to the coalescence of SBCs.
[1] |
J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Science 312 (2006) 90-91.
PMID |
[2] |
N. Petrushin, K. Hvatzkiy, V. Gerasimov, T. Link, A. Epishin, G. Nolze, G. Gerstein, Adv. Eng. Mater. 17 (2015) 755-760.
DOI URL |
[3] |
D.H. Ping, C.Y. Cui, Y.F. Gu, H. Harada, Ultramicroscopy 107 (2007) 791-795.
PMID |
[4] | F. Pyczak, A. Bauer, M. Goken, S. Neumeier, U. Lorenz, M. Oehring, N. Schell, A. Schreyer, A. Stark, F. Symanzik, Mater. Sci. Eng. A-Struct.Mater. Prop. 571 (2013) 13-18. |
[5] |
F. Xue, C.H. Zenk, L.P. Freund, M. Hoelzel, S. Neumeier, M. Goken, Scr. Mater. 142 (2018) 129-132.
DOI URL |
[6] |
H.J. Zhou, H. Chang, Q. Feng, Scr. Mater. 135 (2017) 84-87.
DOI URL |
[7] | L. Shi, J.J. Yu, C.Y. Cui, X.F. Sun, Mater. Sci. Eng. A-Struct.Mater. Prop. 620 (2015) 36-43. |
[8] | W. Li, T. Jin, X.F. Sun, Y. Guo, H.R. Guan, Z.Q. Hu, Acta Metall. Sin. 37 (2001) 1165-1168 (in Chinese). |
[9] | D. Liu, Y.Y. Song, B. Shi, Q. Zhang, X.G. Song, H.W. Niu, J.C. Feng, J. Mater, Sci. Technol. 34 (2018) 1843-1850. |
[10] | M. Pouranvari, May 19-21, 2009, pp. 580-583. |
[11] |
M. Pouranvari, A. Ekrami, A.H. Kokabi, J. Alloys Compd. 563 (2013) 143-149.
DOI URL |
[12] |
B. Binesh, A.J. Gharehbagh, J. Mater. Sci. Technol. 32 (2016) 1137-1151.
DOI URL |
[13] |
G.L. Wang, Y. Sun, X.G. Wang, J.D. Liu, J.L. Liu, J.G. Li, J.J. Yu, Y.Z. Zhou, T. Jin, X.D. Sun, X.F. Sun, J. Mater. Sci. Technol. 33 (2017) 1219-1226.
DOI URL |
[14] |
R. Bakhtiari, A. Ekrami, Defect Diffus Forum 312-315 (2011) 399-404.
DOI URL |
[15] |
L.X. Zhang, Z. Sun, Q. Xue, M. Lei, X.Y. Tian, Mater. Des. 90 (2016) 949-957.
DOI URL |
[16] | M. Pouranvari, A. Ekrami, A.H. Kokabi, Mater. Sci. Eng. A-Struct.Mater. Prop. 568 (2013) 76-82. |
[17] | V. Jalilvand, H. Omidvar, H.R. Shakeri, M.R. Rahimipour, Metall. Mater. Trans. B-Proc.Metall. Mater. Process. Sci. 44 (2013) 1222-1231. |
[18] |
Y. Sun, J.D. Liu, Z.M. Liu, J.X. Yang, J.G. Li, T. Jin, X.F. Sun, Acta Metall. Sin. 49 (2013) 1581-1589.
DOI URL |
[19] |
A. Doroudi, A. Shamsipur, H. Omidvar, M. Vatanara, J. Manuf. Process. 38 (2019) 235-243.
DOI URL |
[20] |
M. Khakian, S. Nategh, S. Mirdamadi, J. Alloys Compd. 653 (2015) 386-394.
DOI URL |
[21] |
M. Pouranvari, Mater. Sci. Technol. 31 (2015) 1773-1780.
DOI URL |
[22] |
M. Pouranvari, A. Ekrami, A.H. Kokabi, Can. Metall. Q. 53 (2014) 38-46.
DOI URL |
[23] | N.C. Sheng, B. Li, J.D. Liu, T. Jin, X.F. Sun, Z.Q. Hu, J. Mater. Sci. Technol. 30 (2014) 213-216. |
[24] | F. Arhami, S.E. Mirsalehi, Metall. Mater. Trans. A-Phys.Metall. Mater. Sci. 49a (2018) 6197-6214 (in Chinese). |
[25] |
A. Ghasemia, M. Pouranvari, Mater. Des. 182 (2019), 108008.
DOI URL |
[26] |
M. Pouranvari, A. Ekrami, A.H. Kokabi, Mater. Sci. Technol. 30 (2014) 109-115.
DOI URL |
[27] | F. Arhami, S.E. Mirsalehi, J. Mater. Sci. Technol 266 (2019) 351-362. |
[28] |
M. Pouranvari, A. Ekrami, A.H. Kokabi, J. Alloy. Compd. 723 (2017) 84-91.
DOI URL |
[29] | F. Jalilian, M. Jahazi, R.A.L. Drew, Mater. Sci. Eng. A-Struct. Mater. Prop. 423 (2006) 269-281. |
[30] | J. Cao, Y.F. Wang, X.G. Song, C. Li, J.C. Feng, Mater. Sci. Eng. A-Struct.Mater. Prop. 590 (2014) 1-6. |
[31] |
S.Y. Wang, Y. Sun, X.Y. Hou, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Mater. Lett. 246 (2019) 190-194.
DOI |
[32] |
R. Bakhtiari, A. Ekrami, Mater. Charact. 66 (2012) 38-45.
DOI URL |
[33] |
J.S.Van Sluytman, T.M. Pollock, Acta Mater. 60 (2012) 1771-1783.
DOI URL |
[34] |
S.Y. Wang, Y. Sun, X.Y. Hou, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Vacuum 177 (2020), 109413.
DOI URL |
[35] |
I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50.
DOI URL |
[36] |
A. Ardell, V. Ozolins, Nat. Mater. 4 (2005) 309-316.
PMID |
[37] |
J.S.Van Sluytman, T.M. Pollock, Acta Mater. 60 (2012) 1771-1783.
DOI URL |
[38] |
T. Osada, Y.F. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, H. Harada, Acta Mater. 61 (2013) 1820-1829.
DOI URL |
[39] | R. Bakhtiari, A. Ekrami, T.I. Khan, Mater. Sci. Eng. A-Struct.Mater. Prop. 546 (2012) 291-300. |
[40] | N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, Z.Q. Hu, J. Mater, Sci. Technol. 31 (2015) 129-134. |
[41] |
B.Q. Zhang, G.M. Sheng, Y.J. Jiao, Z.H. Gao, X.F. Gong, H. Fan, J. Zhong, J. Alloys Compd. 695 (2017) 3202-3210.
DOI URL |
[42] |
W. Li, T. Jin, X.F. Sun, Y. Guo, H.R. Guan, Z.Q. Hu, Scr. Mater. 48 (2003) 1283-1288.
DOI URL |
[43] | N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, Z.Q. Hu, Metall. Mater. Trans. A-Phys.Metall. Mater. Sci. 44a (2013) 1793-1804. |
[44] | S.Y. Wang, Y. Sun, X.Y. Hou, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Mater. Lett. 258(2020). |
[45] |
J.D. Liu, T. Jin, W. Li, X.F. Sun, H.R. Guan, Z.Q. Hu, J. Alloys Compd. 457 (2008) 185-190.
DOI URL |
[46] | Y.N. Yu, Metallography Principle, first ed., Metalurgical Industry Press Co., Ltd., Beijing, 2010, pp. 209-210. |
[47] | J.R. Davis, Nickel, Cobalt, and Their Alloys, ASM Specialty Handbook, ASM International, USA, 2000. |
[1] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[2] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[3] | Shifeng Lin, Zhengwang Zhu, Shaofan Ge, Long Zhang, Dingming Liu, Yanxin Zhuang, Huameng Fu, Hong Li, Aimin Wang, Haifeng Zhang. Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy [J]. J. Mater. Sci. Technol., 2020, 50(0): 128-138. |
[4] | Liying Zhou, Wenxiong Chen, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding [J]. J. Mater. Sci. Technol., 2020, 43(0): 92-103. |
[5] | Juan Hou, Wei Chen, Zhuoer Chen, Kai Zhang, Aijun Huang. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel [J]. J. Mater. Sci. Technol., 2020, 48(0): 63-71. |
[6] | Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming [J]. J. Mater. Sci. Technol., 2020, 45(0): 23-34. |
[7] | Liying Zhou, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding [J]. J. Mater. Sci. Technol., 2019, 35(8): 1671-1680. |
[8] | Niu Pengliang, Li Wenya, Zhang Zhihan, Yang Xiawei. Global and local constitutive behaviors of friction stir welded AA2024 joints [J]. J. Mater. Sci. Technol., 2017, 33(9): 987-990. |
[9] | Yunyu Li, Ling-jun Guo, Ya-wen Wang, He-jun Li, Qiang Song. A Novel Multiscale Reinforcement by In-Situ Growing Carbon Nanotubes on Graphene Oxide Grafted Carbon Fibers and Its Reinforced Carbon/Carbon Composites with Improved Tensile Properties [J]. J. Mater. Sci. Technol., 2016, 32(5): 419-424. |
[10] | Yanhong Jing, Zhi Zheng, Enze Liu, Yi Guo. Microstructural Evolution of a Ni-base Alloy DZ468 Joint Bonded with a New Co-base Filler [J]. J. Mater. Sci. Technol., 2014, 30(5): 480-486. |
[11] | Naicheng Sheng, Bo Li, Jide Liu, Tao Jin, Xiaofeng Sun, Zhuangqi Hu. Influence of the Substrate Orientation on the Isothermal Solidification during TLP Bonding Single Crystal Superalloys [J]. J. Mater. Sci. Technol., 2014, 30(3): 213-216. |
[12] | Zhaorui Li, Jianbin Wang, Yuanjian Tong, Lianghua Xu. Anodic Oxidation on Structural Evolution and Tensile roperties of Polyacrylonitrile Based Carbon Fibers with Different Surface Morphology [J]. J. Mater. Sci. Technol., 2012, 28(12): 1123-1129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||