J. Mater. Sci. Technol. ›› 2021, Vol. 80: 234-243.DOI: 10.1016/j.jmst.2020.11.053
• Research Article • Previous Articles Next Articles
D.L. Gonga,b, H.L. Wangc, E.G. Obbard, R. Yanga, Y.L. Haoa,*()
Received:
2020-10-12
Accepted:
2020-11-09
Published:
2020-12-25
Online:
2020-12-25
Contact:
Y.L. Hao
About author:
* E-mail address: ylhao@imr.ac.cn (Y.L. Hao).D.L. Gong, H.L. Wang, E.G. Obbard, R. Yang, Y.L. Hao. Tuning thermal expansion by a continuing atomic rearrangement mechanism in a multifunctional titanium alloy[J]. J. Mater. Sci. Technol., 2021, 80: 234-243.
Fig. 1. (a) Schematic illustration of the geometry of SXRD experiment. (b) 2D Debye-Scherrer diffraction rings measured at 298 K using a 6% pre-strained specimen.
Fig. 2. Tunable thermal expansion of Ti2448 alloy. (a) Thermal expansion curves of the specimen with the pre-strain of 6%, showing near ZTE (black curve) after the thermal training (red curve). (b) Effect of the pre-strain on expansion, which were measured after the thermal training.
Fig. 3. Smooth and fully-overlapped DSC curves during two heating-cooling cycles, in which the specimens were deformed with the pre-strain of 0 (a), 3% (b), 6% (c) and 9% (d).
Fig. 4. In-situ SXRD profiles of the specimen with a pre-strain of 6% measured between 298 and 573 K for two heating and cooling cycles. The first cooling was finished at 323 K.
Fig. 5. The in-plane lattice strains varied with temperature during two thermal cycles between 298 and 573 K. (a) (110) plane of bcc crystal and (b) (020) plane of orth crystal.
Fig. 6. SXRD profiles of the ZTE specimen. (a) The profile measured at 298 K to show peak fitting. (b) The profiles measured from 298 to 573 K at an interval of 25 K.
Lattice plane | CTE (10-6 K-1) | |
---|---|---|
bcc | (200) | 1.5 |
(110) | 10.3 | |
(220) | 11.2 | |
(211) | 6.1 | |
orth | (200) | 70.4 |
(020) | -22.3 | |
(021) | -7.4 | |
(022) | -21.9 | |
(131) | 4.0 | |
(240) | 5.2 |
Table 1 Variations of CTEs with crystal orientations.
Lattice plane | CTE (10-6 K-1) | |
---|---|---|
bcc | (200) | 1.5 |
(110) | 10.3 | |
(220) | 11.2 | |
(211) | 6.1 | |
orth | (200) | 70.4 |
(020) | -22.3 | |
(021) | -7.4 | |
(022) | -21.9 | |
(131) | 4.0 | |
(240) | 5.2 |
Fig. 8. Influence of temperature on volume fraction of the orth crystal in the ZTE specimen, in which the volume fraction is characterized by the unified ratio of peak areas.
Fig. 9. Continuous and reversible atomic rearrangement via the coupled atomic shear and shuffle of the orth crystal in the ZTE specimen. (a) Linear shear-shuffle relation. (b) Linear shear-temperature relation. The diffusional data and the dash line in (a) from Ref. [30,35].
Tensor | Eigenvalue (10-6 K-1) | |
---|---|---|
bcc | α11 | 1.5 |
α22 | 22.0 | |
α33 | 7.6 | |
orth | α11 | 70.4 |
α22 | -22.3 | |
α33 | 24.6 |
Table 2 Eigenvalues of the thermal expansion tensor.
Tensor | Eigenvalue (10-6 K-1) | |
---|---|---|
bcc | α11 | 1.5 |
α22 | 22.0 | |
α33 | 7.6 | |
orth | α11 | 70.4 |
α22 | -22.3 | |
α33 | 24.6 |
Fig. 10. The temperature-free CTEs of the orth crystal presented by 3D diagram (a) and its 2D cross-sections (b,c), showing the positive (red) and negative (blue) thermal expansions.
CTE (×10-6/K) | Poisson’s ratios | |||
---|---|---|---|---|
<100> | <110> | <100> | <110> | |
Measured | 1.5 | 10.3 | 0.83# | -0.14# |
Modelled | 2.2 | 10.8 | 0.76* | -0.20* |
Table 3 The measured and modelled CTEs and Poisson’s ratios on the (110) plane of bcc crystal.
CTE (×10-6/K) | Poisson’s ratios | |||
---|---|---|---|---|
<100> | <110> | <100> | <110> | |
Measured | 1.5 | 10.3 | 0.83# | -0.14# |
Modelled | 2.2 | 10.8 | 0.76* | -0.20* |
Fig. 11. The temperature-free positive CTEs of the elastically-distorted bcc crystal presented by 3D diagram (a) and 2D diagrams on its (100) (b) and (001) (c) planes.
[1] | R. Roy, D.K. Agrawal, H.A. McKinstry, Annu.Rev. Mater. Sci. 19 (1989) 59-81. |
[2] | C.E. Guillaume, Proc. Phys. Soc. Lond. 32 (1919) 374-404. |
[3] |
M. Van Schilfgaarde, I.A. Abrikosov, B. Johansson, Nature 400 (1999) 46-49.
DOI URL |
[4] |
S. Li, R. Huang, Y. Zhao, W. Wang, Y. Han, L. Li, Adv. Funct. Mater. 27 (2017), 1604195.
DOI URL |
[5] |
W. Wang, R. Huang, W. Li, J. Tan, Y. Zhao, S. Li, C. Huang, L. Li, Phys. Chem. Chem. Phys. 17 (2015) 2352-2356.
DOI PMID |
[6] |
X. Song, Z. Sun, Q. Huang, M. Rettenmayr, X. Liu, M. Seyring, G. Li, G. Rao, F. Yin, Adv. Mater. 23 (2011) 4690-4694.
DOI URL |
[7] |
Z. Sun, X. Song, J. Mater. Sci. Technol. 30 (2014) 903-909.
DOI URL |
[8] |
J. Salvador, F. Guo, T. Hogan, M. Kanatzidis, Nature 425 (2003) 702-705.
DOI URL |
[9] |
J. Chen, X. Xing, C. Sun, P. Hu, R. Yu, X. Wang, H. Li, J. Am. Chem. Soc 130 (2008) 1144-1145.
DOI PMID |
[10] |
Ahadi, Y. Matsushita, T. Sawaguchi, Q.P. Sun, K. Tsuchiya, Acta Mater. 124 (2017) 79-92.
DOI URL |
[11] |
J.J. Wang, T. Omori, Y. Sutou, R. Kainuma, K. Ishida, J. Electron. Mater. 33 (2004) 1098-1102.
DOI URL |
[12] |
R. Kainuma, J.J. Wang, T. Omori, Y. Sutou, K. Ishida, Appl. Phys. Lett. 80 (2002) 4348-4350.
DOI URL |
[13] |
J.A. Monroe, D. Gehring, I. Karaman, R. Arroyave, D.W. Brown, B. Clausen, Acta Mater. 102 (2016) 333-341.
DOI URL |
[14] | Y. Wang, J.H. Gao, H.J. Wu, S. Yang, X.D. Ding, D. Wang, X.B. Ren, Y.Z. Wang, X.P. Song, J.R. Gao, Sci. Rep. 4 (2014) 1-5. |
[15] |
T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Science 300 (2003) 464-467.
DOI URL |
[16] | M. Niinomi, M. Nakai, T. Akahori, H. Tsutsumi, Mater. Sci.Forum 638-642 (2010) 16-21. |
[17] |
M. Abdel-Hady, M. Morinaga, Scr. Mater. 61 (2009) 825-827.
DOI URL |
[18] |
M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, X. Feng, M. Ogawa, Mater. Trans. 50 (2009) 423-426.
DOI URL |
[19] | C. Lan, J. Liang, Y. Lao, D. Tan, C. Huang, X. Mo, J. Pang, Acta Metall. Sin. 55 (2019) 701-708. |
[20] |
M. Gepreel, Key Eng. Mater. 495 (2012)62-66.
DOI URL |
[21] | Y.L. Hao, H.L. Wang, T. Li, J.M. Cairney, A.V. Ceguerra, Y.D. Wang, Y. Wang, D. Wang, E.G. Obbard, S.J. Li, R. Yang, J. Mater. Sci. Technol. 32 (2016) 705-709. |
[22] |
D. Gehring, I. Karaman, Scr. Mater. 186 (2020) 142-146.
DOI URL |
[23] | E.W. Collings, Met. Park Ohio 3 (1984). |
[24] |
Y.L. Hao, S.J. Li, B.B. Sun, M.L. Sui, R. Yang, Phys. Rev. Lett. 98 (2007), 216405.
PMID |
[25] |
H.Y. Kim, L. Wei, S. Kobayashi, M. Tahara, S. Miyazaki, Acta Mater. 61 (2013) 4874-4886.
DOI URL |
[26] |
L.S. Wei, H.Y. Kim, S. Miyazaki, Acta Mater. 100 (2015) 313-322.
DOI URL |
[27] |
F.Y. Qin, W.L. Xiao, F.S. Lu, Y.C. Ji, X.Q. Zhao, X.B. Ren, J. Mater. Sci. Technol. 35 (3) (2019) 396-401.
DOI URL |
[28] |
H.L. Wang, T. Li, Y.L. Hao, E.G. Obbard, J.M. Cairney, Y.L. Hao, S.J. Li, R. Yang, J. Alloys Compd. 700 (2017) 155-158.
DOI URL |
[29] |
H.L. Wang, Y.L. Hao, S.Y. He, T. Li, J.M. Cairney, Y.D. Wang, Y. Wang, E.G. Obbard, F. Prima, K. Du, S.J. Li, R. Yang, Acta Mater. 135 (2017) 330-339.
DOI URL |
[30] |
H.L. Wang, Y.L. Hao, S.Y. He, K. Du, T. Li, E.G. Obbard, J. Hudspeth, J.G. Wang, Y.D. Wang, Y. Wang, F. Prima, N. Lu, M.J. Kim, J.M. Cairney, S.J. Li, R. Yang, Scr. Mater. 133 (2017) 70-74.
DOI URL |
[31] |
K. Otsuka, X. Ren, Prog. Mater. Sci. 50 (2005) 511-678.
DOI URL |
[32] |
Q.L. Liang, Z. Kloenne, Y.F. Zheng, D. Wang, S. Antonov, Y.P. Gao, Y.L. Hao, R. Yang, Y.Z. Wang, H.L. Fraser, Scr. Mater. 177 (2020) 181-185.
DOI URL |
[33] |
Q.L. Liang, Y.F. Zheng, D. Wang, Y.L. Hao, R. Yang, Y.Z. Wang, H.L. Fraser, Scr. Mater. 158 (2019) 95-99.
DOI URL |
[34] |
Q.L. Liang, D. Wang, Y.F. Zheng, S.S. Zhao, Y.P. Gao, Y.L. Hao, R. Yang, D. Banerjee, H.L. Fraser, Y.Z. Wang, Acta Mater. 186 (2020) 415-424.
DOI URL |
[35] |
Y.L. Hao, D.L. Gong, T. Li, H.L. Wang, J.M. Cairney, Y.D. Wang, E.G. Obbard, F. Sun, F. Prima, S.J. Li, K. Du, R. Yang, Materialia 2 (2018) 1-8.
DOI URL |
[36] |
A.P. Hammersley, J. Appl. Crystallogr. 49 (2016) 646-652.
DOI URL |
[37] | L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, H.R. Wenk, Z. Krist. Suppl, 26 (2007) 125-130. |
[38] |
L. Lutterotti, D. Chateigner, S. Ferrari, J. Ricote, Thin Solid Films 450 (2004) 34-41.
DOI URL |
[39] |
M. Wojdyr, J. Appl. Cryst. 43 (2010) 1126-1128.
DOI URL |
[40] |
M.A.H. Gepreel, M. Niinomi, M. Nakai, M. Morinaga, JOM 71 (2019) 3631-3639.
DOI URL |
[41] |
H. Chen, Y.D. Wang, Z. Nie, R. Li, D. Cong, W. Liu, F. Ye, Y. Liu, P. Cao, F. Tian, X. Shen, R. Yu, L. Vitos, M. Zhang, S. Li, X. Zhang, H. Zheng, J.F. Mitchell, Y. Ren, Nat. Mater. 19 (2020) 712-718.
DOI URL |
[42] | E.G. Obbard, China, 2010. |
[43] |
H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Acta Mater. 54 (2006) 2419-2429.
DOI URL |
[44] |
R.I. Belousov, S.K. Filatov, Glas. Phys. Chem. 33 (2007) 271-275.
DOI URL |
[45] | H. Chen, H. Xiang, F.Z. Dai, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 36 (2020) 134-139. |
[46] |
Y.W. Zhang, S.J. Li, E.G. Obbard, H. Wang, S.C. Wang, Y.L. Hao, R. Yang, Acta Mater. 59 (2011) 3081-3090.
DOI URL |
[47] |
J.J. Wortman, R.A. Evans, J. Appl. Phys. 36 (1965) 153-156.
DOI URL |
[1] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[2] | Y.Q. Liu, S.H. Wei, J.Z. Fan, Z.L. Ma, T. Zuo. Mechanical Properties of a Low-thermal-expansion Aluminum/Silicon Composite Produced by Powder Metallurgy [J]. J. Mater. Sci. Technol., 2014, 30(4): 417-422. |
[3] | Hongzhi Ji, Lin Yuan, Debin Shan. Effect of Microstructure on Thermal Expansion Coefficient of 7A09 Aluminum Alloy [J]. J Mater Sci Technol, 2011, 27(9): 797-801. |
[4] | Juan Yang Yongsen Yang Qinqin Liu Guifang Xu Xiaonong Cheng. Preparation of Negative Thermal Expansion ZrW2O8 Powders and Its Application in Polyimide/ZrW2O8 Composites [J]. J Mater Sci Technol, 2010, 26(7): 665-668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||