J. Mater. Sci. Technol. ›› 2021, Vol. 76: 60-75.DOI: 10.1016/j.jmst.2020.11.009
• Research Article • Previous Articles Next Articles
Dandan Wang1, Junping Ju1, Shuang Wang, Yeqiang Tan*(
)
Received:2020-08-15
Revised:2020-09-22
Accepted:2020-09-22
Published:2021-06-20
Online:2020-11-07
Contact:
Yeqiang Tan
About author:*E-mail address: tanyeqiang@qdu.edu.cn (Y. Tan).1These authors contributed equally to this work.
Dandan Wang, Junping Ju, Shuang Wang, Yeqiang Tan. Research progress on the luminescence of biomacromolecules[J]. J. Mater. Sci. Technol., 2021, 76: 60-75.
Fig. 1. (a) The synthetic route to TPEDMesB [13]. Copyright 2011, The Royal Society of Chemistry. (b) The synthesis of TPPA-DBO probe [14]. Copyright 2016, The Royal Society of Chemistry. (c) Synthetic route to Im-TPE [15]. Copyright 2011, The Royal Society of Chemistry.
Fig. 2. (a) Photograph of the rice taken under 365 nm UV light illumination and emission spectrum. (b) Photographs of the solutions of starch, cellulose and BSA taken at room temperature, and 77 K under room lighting. (c) Photographs of the solid powders of starch, cellulose and BSA taken under 365 nm UV illumination at room temperature [22]. Copyright 2013, Science China Press and Springer-Verlag GmbH.
Fig. 3. LSCM images of (a) selectively reduced CG microspheres excited at 365 nm, (b) CG microspheres excited at 488 nm, and (c) chitosan microspheres crosslinked by formaldehyde (CF microspheres) excited at 543 nm. The scale bars represent 10um [16]. Copyright 2007, Wiley-VCH. (d) UV-vis absorption (black line) spectrum of the 3D-FCH. Inset: photograph of the 3D-FCH under sunlight (top) and UV light (365 nm) (bottom). (e) fluorescence excitation and emission spectra (λex = 37 nm, λem = 401 nm) [17]. Copyright 2015, The Royal Society of Chemistry (f) Chitosan-GA cross-linking reaction [18]. Copyright 2018, American Chemical Society. (g) The schematic of gelation process of the as-developed BSA protein hydrogel. (h) Fluorescence photographs of 20 % BSA solution and 20 % BSA hydrogel excited by 365, 405, 420, and 490 nm, respectively [47]. Copyright 2018, Wiley-VCH.
Fig. 4. (a) Schematic diagram of chitosan-based fluorescent materials: “Molecule’’ to “Material’’ [19]. Copyright 2012, Elsevier B.V. (b) Synthesis of a Bioconjugate of Tetraphenylethene(TPE) and Chitosan (CS). (c) Fluorescent images of TPE - CS [48]. Copyright 2013, American Chemical Society. (d) Confocal laser scanning fluorescence microscope images of the gelation process of TPE-CS [49]. Copyright 2016, Nature Publishing Group. (e) Schematic representation of a reaction mechanism between the CHI oligomer and FITC. Schematic representation of the reaction mechanism between CHI-FITC and Cu2+ (f) and the energy transfer phenomenon (g) [50]. Copyright 2017, MDPI, ST ALBAN-ANLAGE.
Fig. 5. (a) Schematic representetion of the detection of the anthrax biomarker (dipicolinic acid, DPA) and fluorescence images of the sensor dispersed in aqueous solution before (left) and after (right) the addition of 0.1 mM DPA under a UV lamp [51]. Copyright 2018, Elsevier Ltd. (b) The mechanisms of the shape memory hydrogels with simultaneously switchable fluorescence [52]. Copyright 2018, WILEY-VCH.
Fig. 6. (a) Schematic illustration of the fluorescent functionalization of cellulose [53]. Copyright 2010 Wiley Periodicals, Inc. (b) Synthetic route and images under visible light (left) and UV irradiation (right, 365 nm) of various cellulose-based fluorescent powders prepared from different cellulose derivatives. (c) synthetic route of CA-FITC and images under visible light (top) and UV irradiation (bottom, 365 nm) of two different CA-FITC powders obtained in neutral (i, methanol) and alkaline (ii, NaOH/H2O/methanol solutions) precipitants, respectively [20]. Copyright 2016, WILEY-VCH. (d) Chemical composition of the cellulose-based trichromatic solid fluorescent materials (CA-SP, CA-FITC, and CA-Pyr), and their fluorescent images change with the length of UV irradiation (365 nm) [21]. Copyright 2017, WILEY-VCH.
Fig. 7. (a) Synthesis of the Fluorescent Cellulose Derivatives AC-AET-DMANMs [55]. Copyright 2017, American Chemical Society. (b) Synthetic scheme of fluorescent coumarin-grafted alginate. (c) Macroscopic appearance of the functionalized alginate [56]. Copyright 2020, The Royal Society of Chemistry.
Fig. 8. (a) The tertiary structure of GFP: carbon atoms are shown in white, nitrogen in blue and oxygen in red [67]. Copyright 2009, The Royal Society of Chemistry. (b) Chromophore structures of BFP derivatives, CFP derivatives, EGFP derivatives and YFP derivatives [63]. Copyright 2009, The Royal Society of Chemistry.
Fig. 9. (a) Confocal microscopy images of the poly(ValGlyGlyLeuGly) amyloidlike fibrils [71]. Copyright 2007, National Academy of Sciences. (b, c) Fluorescence microscopy images of (b) fully hydrated and (c) dry GVA fibrils [72]. Copyright 2011, American Chemical Society.
Fig. 10. (a) Exampled nonaromatic amino acids and photographs of their recrystallized solids taken under 365 nm UV light. (b) Photographs of different ε-PLL aqueous solutions and solid powders taken under 365 nm UV light or after ceasing the UV irradiation [73]. Copyright 2018, Science China Press and Springer-Verlag GmbH.
Fig. 11. (a) N?O and O?O intermolecular interactions around one molecule. (b) fragmental 3D through space electronic communication channel in the l-Ser crystals (color online) [73]. Copyright 2018, Science China Press and Springer-Verlag GmbH.
Fig. 12. (a) Representation of native human serum albumin structure and schematic representation of fibril formation via intermediate oligomers. (b) Changes in the fluorescence spectra (λex = 375 nm) of HSA as a function of concentrations (2-500 μM) at 450 nm emission wavelength [74]. Copyright 2017, American Chemical Society. (c) BSA structure with partial aromatic (green, cyan, and blue) and nonaromatic (purple and yellow) amino acid residues shown in different colors [75]. Copyright 2019, Wiley-VCH.
Fig. 13. (a) Photographs of the solid powder and a tablet of BSA placed in air or in vacuum taken under 312 nm UV light or after ceasing the irradiation. (b, c) Emission spectra of BSA powder (b) and tablet (c) with varying λex values. (d) Absorption and delayed emission spectra of a BSA tablet in air with varying λex values. (e) Excitation spectra of a BSA tablet with different λem values. (f) Demonstration of the potential anticounterfeiting and oxygen sensing applications of BSA [75]. Copyright 2019, Wiley-VCH.
Fig. 14. (a) Photographs taken under 365 nm UV light of varying aqueous GMr solutions. (b) Schematic illustration of SA molecules from isolated to aggregated states and possible intra- and intermolecular interactions within the clusters. (c) Photographs of a flower drawn on a PTFE plate using 8 wt % GM r taken at ambient conditions under room light, 312 nm UV light, and after the stop of UV irradiation [23]. Copyright 2018, American Chemical Society.
Fig. 15. (a) Photographs of CMC-Na and CMC-Zn powders under ambient conditions taken at different time intervals before and after the excitation was turned off (λex =365 nm) [85]. Copyright 2018, Elsevier Ltd. (b) Photographs of MCC, HEC, HPC, and CA powders taken under 365 nm UV irradiation [86]. Copyright 2019, Frontiers Media S.A. (c) Fluorescence spectra of CS-1 solution (1 mg mL-1) with different excitation wavelengths. Fluorescence microscope images of CS-1 solid powder. 1, 2, and 3 refer to images taken under UV (340-380), blue (460-500), and green (540-552) lights, respectively (Scale bar 500 μm) [89]. Copyright 2020, Elsevier Ltd.
Fig. 16. Comparison of PL intensity for different concentrations of CMCh and CS solutions before and after mixing with 0.005 M of Zn2+ at pH = 6.4. The λex used for pure CMCh and CS solutions is 320 nm, and is 358 nm for CMCh-Zn and CS-Zn solutions [93]. Copyright 2020, Elsevier Ltd.
| [1] |
Q. Li, M. Peng, H. Li, C. Zhong, L. Zhang, X. Cheng, X. Peng, Q. Wang, J. Qin, Z. Li, Org. Lett., 14 (2012), pp. 2094-2097
DOI URL |
| [2] |
X. Chen, J. Wang, J. Cui, Z. Xu, X. Peng, Tetrahedron, 67 (2011), pp. 4869-4873
DOI URL |
| [3] |
H. Lu, F. Su, Q. Mei, X. Zhou, Y. Tian, W. Tian, R.H. Johnson, D.R. Meldrum, J. Polym. Sci.: Polym. Chem., 50 (2012), pp. 890-899
DOI URL |
| [4] |
K. Ma, H. Wang, X. Li, B. Xu, W. Tian, Anal. Bioanal. Chem., 407 (2015), pp. 2625-2630
DOI URL |
| [5] | B.W. Wang, K. Jiang, J.X. Li, S.H. Luo, H.F. Jiang, Angew. Chemie Int. Ed. English, 59 (2019), pp. 2338-2343 |
| [6] | Y. Yan, R.M. Laine, H. Liu, Chem. Plus. Chem, 84 (2019), pp. 1630-1637 |
| [7] |
Q. Wan, B. Zhang, J. Tong, Y. Li, H. Wu, H. Zhang, Z. Wang, Y. Pan, B.Z. Tang, Phys. Chem. Chem. Phys., 21 (2019), pp. 9837-9844
DOI URL |
| [8] | J.D. Luo, Z.L. Xie, J.W.Y. Lam, L. Cheng, H.Y. Chen, C.F. Qiu, H.S. Kwok, X.W. Zhan, Y.Q. Liu, D.B. Zhu, B.Z. Tang, Chem. Commun. (2001), pp. 1740-1741 |
| [9] | Y. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Commun. (2009), pp. 4332-4353 |
| [10] |
Z.J. Ning, C. Zhao, Q. Zhang, Y.L. Yan, S.X. Qian, C. Yong, H. Tian, Adv. Funct. Mater., 17 (2007), pp. 3799-3807
DOI URL |
| [11] |
J. Mei, N.L.C. Leung, R.T.K. Kwok, J.W.Y. Lam, B.Z. Tang, Chem. Rev., 115 (2015), pp. 11718-11940
DOI URL |
| [12] | L.L. Shi, X.H. Gao, W.Z. Yuan, L. Xu, H.P. Deng, C.W. Wu, J.P. Yang, X. Jin, C. Zhang, X.Y. Zhu, Small, 14 (2018) |
| [13] |
W.Z. Yuan, S. Chen, J.W. Lam, C. Deng, P. Lu, H.H. Sung, I.D. Williams, H.S. Kwok, Y. Zhang, B.Z. Tang, Chem. Commun., 47 (2011), pp. 11216-11218
DOI URL |
| [14] | H. Ma, Z. Yang, H. Cao, L. Lei, L. Chang, Y. Ma, M. Yang, X. Yao, S. Sun, Z. Lei, MJ. Mater. Chem. B Mater. Biol. Med., 5 (2017), pp. 655-660 |
| [15] |
N. Bian, Q. Chen, X.L. Qiu, A.-D. Qi, B.H. Han, New J. Chem., 35 (2011), pp. 1667-1671
DOI URL |
| [16] |
W. Wei, L.Y. Wang, L. Yuan, Q. Wei, X.D. Yang, Z.G. Su, G.H. Ma, Adv. Funct. Mater., 17 (2007), pp. 3153-3158
DOI URL |
| [17] |
Z. Geng, H. Zhang, Q. Xiong, Y. Zhang, H. Zhao, G. Wang, J. Mater. Chem. A, 3 (2015), pp. 19455-19460
DOI URL |
| [18] |
J. Song, H. Zhou, R. Gao, Y. Zhang, H. Zhang, Y. Zhang, G. Wang, P.K. Wong, H. Zhao, ACS Sens., 3 (2018), pp. 792-798
DOI URL |
| [19] |
Q. Meng, W. Su, C. He, C. Duan, Talanta, 97 (2012), pp. 456-461
DOI URL |
| [20] |
W. Tian, J. Zhang, J. Yu, J. Wu, H. Nawaz, J. Zhang, J. He, F. Wang, Adv. Opt. Mater., 4 (2016), pp. 2044-2050
DOI URL |
| [21] | W. Tian, J. Zhang, J. Yu, J. Wu, J. Zhang, J. He, F. Wang, Adv. Funct. Mater., 28 (2018) |
| [22] |
Y. Gong, Y. Tan, J. Mei, Y. Zhang, W. Yuan, Y. Zhang, J. Sun, B.Z. Tang, Sci. China-Chem., 56 (2013), pp. 1178-1182
DOI URL |
| [23] |
X. Dou, Q. Zhou, X. Chen, Y. Tan, X. He, P. Lu, K. Sui, B.Z. Tang, Y. Zhang, W.Z. Yuan, Biomacromolecules, 19 (2018), pp. 2014-2022
DOI URL |
| [24] |
L.L. Du, B.L. Jiang, X.H. Chen, Y.Z. Wang, L.M. Zou, Y.L. Liu, Y.Y. Gong, C. Wei, W.Z. Yuan, Chin. J. Polym. Sci., 37 (2019), pp. 409-415
DOI URL |
| [25] |
G.F. Picheth, C.L. Pirich, M.R. Sierakowski, M.A. Woehl, C.N. Sakakibara, C.F. De Souza, A.A. Martin, R. Da Silva, R.A. De Freitas, Int. J. Biol. Macromol., 104 (2017), pp. 97-106
DOI URL |
| [26] |
H.H. Tønnesen, J. Karlsen, Drug Dev. Ind. Pharm., 28 (2002), pp. 621-630
PMID |
| [27] |
B. Kundu, N.E. Kurland, S. Bano, C. Patra, F.B. Engel, V.K. Yadavalli, S.C. Kundu, Prog. Polym. Sci., 39 (2014), pp. 251-267
DOI URL |
| [28] |
A.D. Augst, H.J. Kong, D.J. Mooney, Macromol. Biosci., 6 (2006), pp. 623-633
DOI URL |
| [29] |
S.Y. Lin, T.H. Wu, Y.C. Jao, C.P. Liu, H.Y. Lin, L.W. Lo, C.S. Yang, Chem.-Eur. J., 17 (2011), pp. 7158-7161
DOI URL |
| [30] |
W.I. Lee, Y. Bae, A.J. Bard, J. Am. Chem. Soc., 126 (2004), pp. 8358-8359
DOI URL |
| [31] |
Q. Zhou, B. Cao, C. Zhu, S. Xu, Y. Gong, W.Z. Yuan, Y. Zhang, Small, 12 (2016), pp. 6586-6592
DOI URL |
| [32] | W.Z. Yuan, Y. Zhang, J. Polym. Sci.: Polym. Chem. Ed., 55 (2017), pp. 560-574 |
| [33] |
W.Y. Li, J.L. Qu, J.W. Du, K.F. Ren, Y.X. Wang, J.Z. Sun, Q.L. Hu, Chem. Commun., 50 (2014), pp. 9584-9587
DOI URL |
| [34] |
C. Chang, J. Peng, L. Zhang, D.W. Pang, J. Mater. Chem., 19 (2009), pp. 7771-7776
DOI URL |
| [35] | H. Tang, X. Duan, X. Feng, L. Liu, S. Wang, Y. Li, D. Zhu, Chem. Commun. (Camb.) (2009), pp. 641-643 |
| [36] |
C. Lin, I. Gitsov, Macromolecules, 43 (2010), pp. 10017-10030
DOI URL |
| [37] |
Z. Emami, M. Ehsani, M. Zandi, R. Foudazi, Carbohydr. Polym., 198 (2018), pp. 509-517
DOI URL |
| [38] |
G. Klöck, A. Pfeffermann, C. Ryser, P. Gröhn, B. Kuttler, H.J. Hahn, U. Zimmermann, Biomaterials, 18 (1997), pp. 707-713
PMID |
| [39] |
G. Orive, A. Carcaboso, R. Hernandez, A. Gascon, J. Pedraz, Biomacromolecules, 6 (2005), pp. 927-931
PMID |
| [40] |
L. Li, Y. Fang, R. Vreeker, I. Appelqvist, E. Mendes, Biomacromolecules, 8 (2007), pp. 464-468
DOI URL |
| [41] |
T. Funami, Y. Fang, S. Noda, S. Ishihara, M. Nakauma, K.I. Draget, K. Nishinari, G.O. Phillips, Food Hydrocoll., 23 (2009), pp. 1746-1755
DOI URL |
| [42] |
V. Bekiari, P. Judeinstein, P. Lianos, J. Lumin., 104 (2003), pp. 13-15
DOI URL |
| [43] |
W.S. Xia, R.H. Schmehl, C.J. Li, Tetrahedron, 56 (2000), pp. 7045-7049
DOI URL |
| [44] |
S. Wu, J. Yin, H. Qu, A. Li, L. Liu, Y. Shao, J. Mater. Sci.-Mater. Electron., 30 (2019), pp. 11336-11345
DOI URL |
| [45] |
Q. Ma, Q. Wang, Carbohydr. Polym., 133 (2015), pp. 19-23
DOI URL |
| [46] |
F.L. Mi, Biomacromolecules, 6 (2005), pp. 975-987
DOI URL |
| [47] | J. Chen, Q.C. Dong, Y.K. Huang, X.Y. Ma, T.H. Fan, J. Biomed. Mater. Res. Part B Appl. Biomater., 107 (2018), pp. 81-91 |
| [48] |
Z. Wang, S. Chen, J.W. Lam, W. Qin, R.T. Kwok, N. Xie, Q. Hu, B.Z. Tang, J. Am. Chem. Soc., 135 (2013), pp. 8238-8245
DOI URL |
| [49] | Z. Wang, J. Nie, W. Qin, Q. Hu, B.Z. Tang, Nat. Commun., 7 (2016), pp. 1-8 |
| [50] |
H.M. Lee, M.H. Kim, Y.I. Yoon, W.H. Park, Mar. Drugs, 15 (2017), p. 105
DOI URL |
| [51] |
M. Donmez, H.A. Oktem, M.D. Yilmaz, Carbohydr. Polym., 180 (2018), pp. 226-230
DOI PMID |
| [52] | Y.K. Jian, X.X. Le, Y.C. Zhang, W. Lu, L. Wang, J. Zheng, J.W. Zhang, Y.J. Huang, T. Chen, Macromol. Rapid Communr., 39 (2018) |
| [53] | Q. Yang, X. Pan, J. Appl Polym. Sci., 117 (2010), pp. 3639-3644 |
| [54] |
R. Jia, W. Tian, H. Bai, J. Zhang, S. Wang, J. Zhang, Nat. Commun., 10 (2019), pp. 1-8
DOI URL |
| [55] |
H. Hu, F. Wang, L. Yu, K. Sugimura, J. Zhou, Y. Nishio, ACS Sustain. Chem. Eng., 6 (2018), pp. 1436-1445
DOI URL |
| [56] |
M. Araújo, S.J. Bidarra, P.M. Alves, J. Valcarcel, J.A. Vázquez, C.C. Barrias, J. Mater. Chem. B, 8 (2020), pp. 813-825
DOI PMID |
| [57] | M.R. Soboleski, J. Oaks, W.P. Halford, FASEB J. 19 (2005), pp. 440-442 |
| [58] |
G.T. Hanson, T.B. Mcananey, E.S. Park, M.E. Rendell, D.K. Yarbrough, S. Chu, L. Xi, S.G. Boxer, M.H. Montrose, S.J. Remington, Biochemistry, 41 (2002), pp. 15477-15488
DOI URL |
| [59] |
I.H. Yuk, S. Wildt, M. Jolicoeur, D.I. Wang, G. Stephanopoulos, Biotechnol. Bioeng., 79 (2002), pp. 74-82
DOI URL |
| [60] |
O. Shimomura, F. Johnson, Y. Saiga, J. Cell. Comp. Physiol., 59 (1962), pp. 223-227
DOI URL |
| [61] |
M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher, Science, 263 (1994), pp. 802-805
DOI URL |
| [62] |
R. Heim, D.C. Prasher, R.Y. Tsien, Proc. Natl. Acad. Sci. U. S. A., 91 (1994), pp. 12501-12504
PMID |
| [63] |
R.N. Day, M.W. Davidson, Chem. Soc. Rev., 38 (2009), pp. 2887-2921
DOI URL |
| [64] |
F. Yang, L.G. Moss, G.N. Phillips, Nat. Biotechnol., 14 (1996), pp. 1246-1251
PMID |
| [65] |
P.S. Weiss, ACS Nano, 2 (2008) 1977-1977
DOI PMID |
| [66] |
D.C. Prasher, V.K. Eckenrode, W.W. Ward, F.G. Prendergast, M.J. Cormier, Gene, 111 (1992), pp. 229-233
PMID |
| [67] |
T.D. Craggs, Chem. Soc. Rev., 38 (2009), pp. 2865-2875
DOI URL |
| [68] | J.R. Lakowicz, Protein fluorescence, Principles of Fluorescence Spectroscopy, Springer (1983), pp. 341-381 |
| [69] | J.R. Lakowicz, Protein Fluorescence, Springer, U.S (1999) |
| [70] |
A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K.R. Kishan, P. Guptasarma, Arch. Biochem. Biophys., 428 (2004), pp. 144-153
DOI URL |
| [71] |
L.L. Del Mercato, P.P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A.M. Tamburro, R. Cingolani, R. Rinaldi, Proc. Natl. Acad. Sci. U. S. A., 104 (2007), pp. 18019-18024
DOI URL |
| [72] |
S. Sharpe, K. Simonetti, J. Yau, P. Walsh, Biomacromolecules, 12 (2011), pp. 1546-1555
DOI PMID |
| [73] |
X. Chen, W. Luo, H. Ma, Q. Peng, W.Z. Yuan, Y. Zhang, Sci. China-Chem., 61 (2018), pp. 351-359
DOI URL |
| [74] |
A. Bhattacharya, S. Bhowmik, A.K. Singh, P. Kodgire, A.K. Das, T.K. Mukherjee, Langmuir, 33 (2017), pp. 10606-10615
DOI PMID |
| [75] |
Q. Wang, X. Dou, X. Chen, Z. Zhao, S. Wang, Y. Wang, K. Sui, Y. Tan, Y. Gong, Y. Zhang, Angew. Chem. Int. Ed., 58 (2019), pp. 12667-12673
DOI URL |
| [76] |
R. Xiao, M.W. Grinstaff, Prog. Polym. Sci., 74 (2017), pp. 78-116
DOI URL |
| [77] |
Y. Yu, M. Shen, Q. Song, J. Xie, Carbohydr. Polym., 183 (2018), pp. 91-101
DOI URL |
| [78] |
R. Stern, M.J. Jedrzejas, Chem. Rev., 108 (2008), pp. 5061-5085
DOI URL |
| [79] | T.J. Painter, Algal polysaccharides, The Polysaccharides, Elsevier (1983), pp. 195-285 |
| [80] |
R. Warren, Annu. Rev. Microbiol., 50 (1996), pp. 183-212
PMID |
| [81] | T.P. Nevell, S.H. Zeronian (Eds.), Cellulose Chemistry and Its Applications, Halsted Press, John Wiley, New York(1985) |
| [82] | K. Gardner, J. Blackwell, Biopolymers: Original Res. Biomol., 13 (1974), pp. 1975-2001 |
| [83] |
D. Roy, M. Semsarilar, J.T. Guthrie, S. Perrier, Chem. Soc. Rev., 38 (2009), pp. 2046-2064
DOI URL |
| [84] |
A. Castellan, R. Ruggiero, E. Frollini, L.A. Ramos, C. Chirat, Holzforschung, 61 (2007), pp. 504-508
DOI URL |
| [85] |
L. Du, G. He, Y. Gong, W.Z. Yuan, S. Wang, C. Yu, Y. Liu, C. Wei, Compos. Commun., 8 (2018), pp. 106-110
DOI URL |
| [86] | M. Li, X. Li, X. An, Z. Chen, H. Xiao, Front. Chem., 7 (2019) |
| [87] |
N. Sudarshan, D. Hoover, D. Knorr, Food Biotechnol., 6 (1992), pp. 257-272
DOI URL |
| [88] |
R. Hejazi, M. Amiji, J. Control. Release, 89 (2003), pp. 151-165
DOI URL |
| [89] | Z. Dong, H. Cui, Y. Wang, C. Wang, Y. Li, C. Wang, Carbohydr. Polym., 227 (2020) |
| [90] |
Y. Ge, Y. Zhang, S. He, F. Nie, G. Teng, N. Gu, Nanoscale Res. Lett., 4 (2009), pp. 287-295
DOI URL |
| [91] |
H. Hu, J.H. Xin, H. Hu, A. Chan, L. He, Carbohydr. Polym., 91 (2013), pp. 305-313
DOI URL |
| [92] |
H. Huang, F. Liu, S. Chen, Q. Zhao, B. Liao, Y. Long, Y. Zeng, X. Xia, Biosens. Bioelectron., 42 (2013), pp. 539-544
DOI URL |
| [93] |
J. Huang, Y.L. Wang, X.D. Yu, Y.N. Zhou, L.Q. Chu, Int. J. Biol. Macromol., 152 (2020), pp. 50-56
DOI URL |
| [1] | Yong-Xin Yang, Zhe Fang, Yi-Hao Liu, Ya-Chen Hou, Li-Guo Wang, Yi-Fan Zhou, Shi-Jie Zhu, Rong-Chang Zeng, Yu-Feng Zheng, Shao-Kang Guan. Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent [J]. J. Mater. Sci. Technol., 2020, 46(0): 114-126. |
| [2] | Zhou Xiaochen, Yang Fan, Gong Xiaoyan, Zhao Ming, Zheng Yufeng, Sun Zhili. Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification [J]. J. Mater. Sci. Technol., 2019, 35(11): 2682-2692. |
| [3] | Cheng Youliang, Xia Bingbing, Fang Changqing, Yang Lu. Structure, mechanical and thermal properties of BMI/E-44/CNTs ternary composites via amination method [J]. J. Mater. Sci. Technol., 2017, 33(10): 1187-1194. |
| [4] | Qiang Zhang, Xiao Lin, Zhengrong Qi, Lili Tan, Ke Yang, Zhuangqi Hu, Yan Wang. Magnesium Alloy for Repair of Lateral Tibial Plateau Defect in Minipig Model [J]. J. Mater. Sci. Technol., 2013, 29(6): 539-544. |
| [5] | Jifen Wang, Huaqing Xie, Zhong Xin. Preparation and Thermal Properties of Grafted CNTs Composites [J]. J Mater Sci Technol, 2011, 27(3): 233-238. |
| [6] | Laizhou SONG, Zunju ZHANG, Shizhe SONG, Zhiming GAO. Preparation and Characterization of the Modified Polyvinylidene Fluoride (PVDF) Hollow Fibre Microfiltration Membrane [J]. J Mater Sci Technol, 2007, 23(01): 55-60. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
