J. Mater. Sci. Technol. ›› 2021, Vol. 75: 154-163.DOI: 10.1016/j.jmst.2020.10.023
• Research Article • Previous Articles Next Articles
Yongliang Qia, Tinghui Caoa, Hongxiang Zonga,*(), Yake Wua, Lin Hea, Xiangdong Dinga, Feng Jianga,*(
), Shenbao Jinb, Gang Shab, Jun Suna
Received:
2020-05-24
Revised:
2020-09-05
Accepted:
2020-09-09
Published:
2020-10-20
Online:
2020-10-20
Contact:
Hongxiang Zong,Feng Jiang
About author:
jiangfeng@mail.xjtu.edu.cn (F. Jiang).Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping[J]. J. Mater. Sci. Technol., 2021, 75: 154-163.
Fig. 1. (a) Comparison of mechanical responses of the Ti3Al3, Ti6Al6 and Ti6Al-30B HEAs. (b) Tensile properties of the Ti6Al6 and Ti6Al6-30B compared to other FeCoNiCr-based HEAs [[14],[15],[17],[34], [35], [36], [37], [38]].
Samples | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
Ti3Al3 | 639 ± 8 | 1067 ± 11 | 46.5 ± 1.7 |
Ti6Al6 | 1238 ± 14 | 1456 ± 12 | 6.9 ± 0.3 |
Ti6Al6-30B | 1119 ± 11 | 1476 ± 13 | 12.9 ± 0.5 |
Table 1 The tensile yield strength (YS), ultimate tensile strength (UTS), and tensile elongation (EL) for the Ti3Al3, Ti6Al6 and Ti6Al6-30B samples.
Samples | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
Ti3Al3 | 639 ± 8 | 1067 ± 11 | 46.5 ± 1.7 |
Ti6Al6 | 1238 ± 14 | 1456 ± 12 | 6.9 ± 0.3 |
Ti6Al6-30B | 1119 ± 11 | 1476 ± 13 | 12.9 ± 0.5 |
Fig. 2. (a) XRD patterns of the three HEAs (Ti3Al3, Ti6Al6 and Ti6Al6-30B) in the as-aged state. (b) Lattice parameters of the Ti3Al3, Ti6Al6 and Ti6Al6-30B HEAs, obtained from correspondingly refined XRD patterns.
Fig. 3. (a) HAADF-STEM image shows a triplex microstructure of the Ti6Al6 HEA containing FCC matrix, FCC L12-type (Ni, Co)3TiAl particles and BCC-based (Ni, Co)2TiAl Heusler particles. (b) [113]BCC microdiffraction pattern from the Heusler particles in (a) indicated by black dashed circles. (c) A typical TEM-EDS spectrum and correspondingly chemical composition of Heusler particles. (d) [111]FCC selected area diffraction pattern from the matrix containing FCC L12-type (Ni, Co)3TiAl nanoparticles. (e) The morphology of these L12-type nanoparticles in the matrix. (f)-(k) Qualitative distribution of Ti, Al, Co, Cr, Fe and Ni, respectively.
Fig. 4. TEM results revealing different phases in the triplex microstructure of the Ti6Al6-30B HEA. (a) HAADF-STEM image from the Ti6Al6-30B HEA. (b) Qualitative boron distribution in (a). (c) [011]BCC selected area diffraction pattern from the Heusler particles in (a) indicated by black dashed circles. (d) A typical TEM-EDS spectrum and correspondingly chemical composition of Heusler particles. (e) [111]FCC selected area diffraction pattern from the matrix containing FCC L12-type (Ni, Co)3TiAl nanoparticles. (f) The morphology of these L12-type nanoparticles in the matrix.
Fig. 5. Typical SEM images at different magnifications from electrochemically polished samples. (a) and (b) Ti3Al3. (c) and (d) Ti6Al6. (e) and (f) Ti6Al6-30B. L12 nanoprecipitates are indicated by red arrows; Heusler precipitates are indicated by blue arrows; Cavities are indicated by yellow dotted circles.
Fig. 6. Statistical results on volume fraction and size of cavities, L12 and Heusler particles and matrix in both the Ti6Al6 and Ti6Al6-30B HEAs. (a) Volume fraction data. (b) Size data. Cavity, L12 and Heusler particles and matrix all are approximately treated to be spherical.
Fig. 7. Bright-field TEM micrographs of the Ti6Al6-30B HEA at the tensile strain of 3%. (a) Dislocations shearing coherent L12 nanoprecipitates in the matrix. (b) The corresponding EDS maps of (a), confirming the location of L12 nanoprecipitates in the matrix, which are enriched in Ni, Al and Ti, but depleted in Cr and Fe. (c) Dislocations locally blocked by Heusler particles mostly formed at grain boundaries, revealing the non-shearable nature of Heusler particles.
Fig. 8. Grain boundary characterization of the Ti6Al6-30B HEA before tensile deformation by EBSD technique, revealing amounts of twin boundaries uniformly formed in this alloy.
Fig. 12. Schematic sketch of microstructure changes influencing the overall mechanical properties of heavy precipitation-strengthened HEAs. (a) A detrimental microstructure containing segregated precipitates and microcavities at precipitate-matrix interfaces, resulting in high tensile strength but little ductility. (b) An optimized microstructure with homogeneously dispersed precipitates and without microcavities, achieving a good combination of tensile strength and ductility.
[1] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI URL |
[2] |
Zhipeng Wang, Qihong Fang, Jia Li, Bin Liu, Yong Liu, J. Mater. Sci. Technol. 34 (2018) 349-354.
DOI URL |
[3] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[4] |
Tao Zhang, Lijun Xin, Fufa Wu, Rongda Zhao, Jun Xiang, Minghua Chen, Songshan Jiang, Yongjiang Huang, Shunhua Chen, J. Mater. Sci. Technol. 35 (2019) 2331-2335.
DOI |
[5] |
J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[6] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (15) (2013) 5743-5755.
DOI URL |
[7] |
C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Intermetallics 62 (2015) 76-83.
DOI URL |
[8] |
M. Feuerbacher, M. Heidelmann, C. Thomas, Mater. Res. Lett. 3 (2014) 1-6.
DOI URL |
[9] |
Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.
DOI URL |
[10] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
[11] |
L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Mate. Sci. Eng. A 716 (2018) 150-156.
DOI URL |
[12] |
Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, E.J. Lavernia, Acta Mater. 107 (2016) 59-71.
DOI URL |
[13] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scripta Mater 68 (7) (2013) 526-529.
DOI URL |
[14] |
Feng He, Chen Da, Bin Han, Qingfeng Wu, Zhijun Wang, Shaolou Wei, Daixiu Wei, Jincheng Wang, C.T. Liu, Ji-jung Kai, Acta Mater. 167 (2019) 275-286.
DOI |
[15] |
Y.J. Chang, A.C. Yeh, Mater. Chem. Phys. 210 (2018) 111-119.
DOI URL |
[16] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang, J. Mater. Sci. Technol. (2020), in press, journal pre-proof |
[17] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[18] |
D. Choudhuri, T. Alam, T. Borkar, B. Gwalani, A.S. Mantri, S.G. Srinivasan, M.A. Gibson, R. Banerjee, Scripta Mater 100 (2015) 36-39.
DOI URL |
[19] |
J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, Z.P. Lu, Intermetallics 79 (2016) 41-52.
DOI URL |
[20] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, et al., Acta Mater. 116 (2016) 332-342.
DOI URL |
[21] | K.A. Taylor, S.S. Hansen, Metall. Trans. A 21A (1990) 1697-1708. |
[22] | R. Wu, A.J. Freeman, G.B. Olson, Science 15 (1994) 376-380. |
[23] | D. Raabe, M. Herbig, S. Sandlobes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.-P. Choi, Curr.Opin. Solid State Mater. Sci. 18 (2014) 253-261. |
[24] |
C.S. Lee, G.W. Han, R.E. Smallman, D. Feng, J.K.L. Lai, Acta Mater. 47 (1999) 1823-1830.
DOI URL |
[25] |
Jae Bok Seol, Jae Wung Bae, Zhiming Li, Jong Chan Han, Jung Gi Kim, Dierk Raabe, Hyoung Seop Kim, Acta Mater. 151 (2018) 366-376.
DOI URL |
[26] | Pavel Lejcvek, Mojmír Šob, V.áclav Paidar, Prog.Mater. Sci. 87 (2017) 83-139. |
[27] |
Sang-Heon Kim, Hansoo Kim, Nack J. Kim, Nature 518 (2015) 77-79.
DOI PMID |
[28] |
Doyup Lee, Toshihiro Omori, Ryosuke Kainuma, J. Alloys Compd. 617 (2014) 120-123.
DOI URL |
[29] |
R.C. Atwood, P.D. Lee, Acta Mater. 51 (2003) 5447-5466.
DOI URL |
[30] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (6417) (2018) 933-937.
DOI URL |
[31] | T. Gradman, The Physical Metallurgy of Microalloyed Steels, Maney Publishing, London, 2002. |
[32] |
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12 (2013) 344-350.
DOI PMID |
[33] |
A. Pineau, A.A. Benzerga, T. Pardoen, Acta Mater. 107 (2016) 424-483.
DOI URL |
[34] |
Z.G. Wang, W. Zhou, L.M. Fu, J.F. Wang, R.C. Luo, X.C. Han, B. Chen, X.D. Wang, Mater. Sci. Eng. A 696 (2017) 503-510.
DOI URL |
[35] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165 (2019) 228-240.
DOI |
[36] |
X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Acta Mater. 141 (2017) 59-66.
DOI URL |
[37] | Dongyue Li, Chengxin Li, Tao Feng, Yidong Zhang, Gang Sha, John J. Lewandowski, Peter K. Liaw, Yong Zhang, Acta Mater. 13 (2017) 285-294. |
[38] |
S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, J. Li, Mater. Sci. Eng. A 671 (2016) 82-86.
DOI URL |
[1] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[2] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[3] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[4] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[5] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[6] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[7] | Yonggang Fan, Junxiang Fan, Cong Wang. Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2021, 68(0): 35-39. |
[8] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[9] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[10] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
[11] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[12] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[13] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[14] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[15] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||