J. Mater. Sci. Technol. ›› 2021, Vol. 70: 67-72.DOI: 10.1016/j.jmst.2020.09.005
• Research Article • Previous Articles Next Articles
Sining Wanga, Lizhong Sua, Yuting Qiub, Yu Xiaoa,*(), Li-Dong Zhaoa,*(
)
Received:
2020-06-19
Revised:
2020-07-02
Accepted:
2020-07-03
Published:
2021-04-20
Online:
2021-04-15
Contact:
Yu Xiao,Li-Dong Zhao
About author:
zhaolidong@buaa.edu.cn(L.-D. Zhao).Sining Wang, Lizhong Su, Yuting Qiu, Yu Xiao, Li-Dong Zhao. Enhanced thermoelectric performance in Cl-doped BiSbSe3 with optimal carrier concentration and effective mass[J]. J. Mater. Sci. Technol., 2021, 70: 67-72.
BiSb(Se1-xClx)3 | nH | μH | m* | PFmax | ρ |
---|---|---|---|---|---|
(1019 cm-3) | (cm2 V-1 s-1) | (m0) | (μW cm-1 K-2) | (g cm-3) | |
x=0 | 0.0491 | 18.35 | 0.96 | 1.21 | 6.53 |
x=0.005 | 4.97 | 10.05 | 1.61 | 3.19 | 6.46 |
x=0.010 | 5.68 | 11.90 | 1.53 | 3.99 | 6.75 |
x=0.015 | 9.58 | 13.36 | 1.84 | 5.75 | 6.65 |
x=0.020 | 13.4 | 7.17 | 2.08 | 4.56 | 6.60 |
Table 1 Room-temperature Hall carrier concentration (nH), Hall carrier mobility (μH), effective mass (m*), the maximum power factor (PFmax), and density (ρ) for BiSb(Se1-xClx)3.
BiSb(Se1-xClx)3 | nH | μH | m* | PFmax | ρ |
---|---|---|---|---|---|
(1019 cm-3) | (cm2 V-1 s-1) | (m0) | (μW cm-1 K-2) | (g cm-3) | |
x=0 | 0.0491 | 18.35 | 0.96 | 1.21 | 6.53 |
x=0.005 | 4.97 | 10.05 | 1.61 | 3.19 | 6.46 |
x=0.010 | 5.68 | 11.90 | 1.53 | 3.99 | 6.75 |
x=0.015 | 9.58 | 13.36 | 1.84 | 5.75 | 6.65 |
x=0.020 | 13.4 | 7.17 | 2.08 | 4.56 | 6.60 |
Fig. 1. Phase identification of BiSb(Se1-xClx)3: (a) powder X-ray diffraction patterns and (b) unit cell volumes and lattice parameters as a function of Cl doping content.
Fig. 2. Electrical transport properties in BiSb(Se1-xClx)3: (a) electrical conductivity; (b) Seebeck coefficient; (c) power factor; (d) Hall carrier concentration and mobility as a function of Cl content; (e) calculated Pisarenko lines with single parabolic band model at room temperature; (f) temperature-dependent weighted mobilities.
Fig. 3. Comparison of the room-temperature electrical transport properties in halogen-doped BiSb(Se1-xHx)3: (a) the relationship between Hall carrier concentration and effective mass; (b) Hall carrier mobility; (c) weighted mobility, the inset presents the power factor; (d) peak power factor and ZT for BiSb(Se0.98I0.02)3 [44], BiSb(Se0.92Br0.08)3 [37], and BiSb(Se0.985Cl0.015)3 in this work.
Fig. 4. The temperature-dependent thermoelectric transport properties for BiSb(Se1-xClx)3: (a) total thermal conductivity; (b) the lattice thermal conductivity; (c) the calculated quality factor B at 300 K, 550 K and 800 K; (d) ZT values.
[1] | J. He, T.M. Tritt, Science, 357(2017), Article eaak9997. |
[2] |
Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Nano Lett., 8(2008), pp. 2580-2584.
DOI URL |
[3] |
X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, J. Am. Chem. Soc., 133(2011), pp. 7837-7846.
DOI URL |
[4] |
Y. Xiao, L.-D. Zhao, Science, 367(2020), pp. 1196-1197.
DOI URL |
[5] | B.C. Qin, Y. Xiao, Y.M. Zhou, L.-D. Zhao, Rare Met. Mater. Eng., 37(2017), pp. 343-350. |
[6] |
P. Ren, Y. Liu, J. He, T. Lv, J. Gao, G. Xu, Inorg. Chem. Front., 5(2018), pp. 2380-2398.
DOI URL |
[7] |
G.J. Snyder, E.S. Toberer, Nat. Mater., 7(2008), pp. 105-114.
DOI URL |
[8] |
G.J. Snyder, A.H. Snyder, Energy Environ. Sci., 10(2017), pp. 2280-2283.
DOI URL |
[9] | Y. Zhou, L.-D. Zhao, Adv. Mater., 29(2017), Article 1702676. |
[10] |
Z. Zheng, X. Su, R. Deng, C.C. Stoumpos, H. Xie, W. Liu, Y. Yan, S. Hao, C. Uher, C. Wolverton, M.G. Kanatzidis, X. Tang J. Am. Chem. Soc., 140(2018), pp. 2673-2686.
DOI URL |
[11] |
B. Qin, Y. Zhang, D. Wang, Q. Zhao, B. Gu, H. Zhang, H. Wu, B. Ye, S.J. Pennycook, L.-D. Zhao, J. Am. Chem. Soc., 142(2020), pp. 5901-5909.
DOI URL |
[12] |
Y. Pei, H. Wang, G.J. Snyder, Adv. Mater., 24(2012), pp. 6125-6135.
DOI URL |
[13] |
W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y.J. Hao, J.F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J.M. Song, Y. Zhu, W. Xu, C. Niu, X. Li, G. Wang, C. Liu, M. Ohta, S.J. Pennycook, J. He, J.F. Li, L.-D. Zhao, Science, 365(2019), pp. 1418-1424.
DOI URL |
[14] |
G. Tan, L.-D. Zhao, M.G. Kanatzidis, Chem. Rev., 116(2016), pp. 12123-12149.
DOI URL |
[15] | W.W. Qu, X.X. Zhang, B.F. Yuan, L.-D. Zhao, Rare Met. Mater. Eng., 37(2017), pp. 79-94. |
[16] | D. Wang, Z. Huang, Y. Zhang, L. Hao, G. Wang, S. Deng, H. Wang, J. Chen, L. He, B. Xiao, Y. Xu, S.J. Pennycook, H. Wu, L.-D. Zhao, Sci. China Mater. (2020), . |
[17] | Z. Huang, L.-D. Zhao, Trends Analyt.Chem., 2(2020), pp. 89-91. |
[18] |
Y. Luo, S. Cai, S. Hao, F. Pielnhofer, I. Hadar, Z.Z. Luo, J. Xu, C. Wolverton, V.P. Dravid, A. Pfitzner, Q. Yan, M.G. Kanatzidis, Joule, 4(2020), pp. 159-175.
DOI URL |
[19] |
L.-D. Zhao, J.He, D. Berardan, Y. Lin, J.F. Li, C.W. Nan, N. Dragoe, Energy Environ. Sci., 7(2014), pp. 2900-2924.
DOI URL |
[20] |
F. Li, T.R. Wei, F. Kang, J.F. Li, J. Mater. Chem. A, 1(2013), pp. 11942-11949.
DOI URL |
[21] |
R. Viennois, P. Hermet, M. Beaudhuin, J.L. Bantignies, D. Maurin, S. Pailhès, M.T. Fernandez-Diaz, M.M. Koza, C. Barreteau, N. Dragoe, D. Bérardan, J. Phys. Chem. C, 123(2019), pp. 16046-16057.
DOI URL |
[22] |
L.-D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature, 508(2014), pp. 373-377.
DOI URL |
[23] |
K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. Zhou, Energy Environ. Sci., 9(2016), pp. 454-460.
DOI URL |
[24] |
Y.X. Chen, Z.H. Ge, M. Yin, D. Feng, X.Q. Huang, W. Zhao, J. He, Adv. Funct. Mater., 26(2016), pp. 6836-6845.
DOI URL |
[25] | F. Serrano-Sánchez, M. Gharsallah, N.M. Nemes, F.J. Mompean, J.L. Martínez, J.A. Alonso, Appl. Phys. Lett., 106(2015), Article 083902. |
[26] |
H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Nat. Mater., 11(2012), pp. 422-425.
DOI URL |
[27] |
H. Liu, X. Yuan, P. Lu, X. Shi, F. Xu, Y. He, Y. Tang, S. Bai, W. Zhang, L. Chen, Y. Lin, L. Shi, H. Lin, X. Gao, X. Zhang, H. Chi, C. Uher, Adv. Mater., 25(2013), pp. 6607-6612.
DOI URL |
[28] |
B. Yu, W. Liu, S. Chen, H. Wang, H. Wang, G. Chen, Z. Ren, Nano Energy, 1(2012), pp. 472-478.
DOI URL |
[29] | Y. Pei, Z.M. Gibbs, A. Gloskovskii, B. Balke, W.G. Zeier, G.J. Snyder, Adv. Energy Mater., 4 (2014), Article 1400486. |
[30] | Q. Zhang, E.K. Chere, K. McEnaney, M. Yao, F. Cao, Y. Ni, S. Chen, C. Opeil, G. Chen, Z. Ren, Adv. Energy Mater ., 5 (2015), Article 1401977. |
[31] |
Y.L. Pei, H. Wu, D. Wu, F. Zheng, J. He, J. Am. Chem. Soc., 136(2014), pp. 13902-13908.
DOI URL |
[32] | Y. Qin, Y. Xiao, L.-D. Zhao, APL Mater ., 8 (2020), Article 010901. |
[33] | S. Wang, Y. Xiao, D. Ren, L. Su, Y. Qiu, L.-D. Zhao, J. Alloys. Compd., 836(2020), Article 155473. |
[34] |
C. Zhou, Y. Yu, Y.K. Lee, O. Cojocaru-Mirédin, B. Yoo, S.P. Cho, J. Im, M. Wuttig, T. Hyeon, I. Chung, J. Am. Chem. Soc., 140(2018), pp. 15535-15545.
DOI URL |
[35] |
J. Dong, F.H. Sun, H. Tang, J. Pei, H.L. Zhuang, H.H. Hu, B.P. Zhang, Y. Pan, J.F. Li, Energy Environ. Sci., 12(2019), pp. 1396-1403.
DOI URL |
[36] |
X. Zhang, L.-D. Zhao, J. Materiomics, 1(2015), pp. 92-105.
DOI URL |
[37] | X. Liu, D. Wang, H. Wu, J. Wang, Y. Zhang, G. Wang, S.J. Pennycook, L.-D. Zhao, Adv. Funct. Mater., 29(2019), Article 1806558 |
[38] | C. Chang, L.-D. Zhao, Mater. Today Phys., 4(2018), pp. 50-57 |
[39] |
D. Byeon, R. Sobota, K. Delime-Codrin, S. Choi, K. Hirata, M. Adachi, M. Kiyama, T. Matsuura, Y. Yamamoto, M. Matsunami, T. Takeuchi, Nat. Commun., 10(2019), p. 72.
DOI URL |
[40] |
X. Qian, D. Wang, Y. Zhang, H. Wu, S.J. Pennycook, L. Zheng, P.F.P. Poudeu, L.-D. Zhao, J. Mater. Chem. A, 8(2020), pp. 5699-5708.
DOI URL |
[41] | G.J. Snyder, A.H. Snyder, M. Wood, R. Gurunathan, B.H. Snyder, C. Niu, Adv. Mater. (2020), Article e2001537. |
[42] |
Y. Xiao, D. Wang, Y. Zhang, C. Chen, S. Zhang, K. Wang, G. Wang, S.J. Pennycook, G.J. Snyder, H. Wu, L.-D. Zhao, J. Am Chem. Soc., 142(2020), pp. 4051-4060.
DOI URL |
[43] |
L. Pan, S. Mitra, L.-D. Zhao, Y.Shen, Y. Wang, C. Felser, D. Berardan, Adv. Funct. Mater., 26(2016), pp. 5149-5157.
DOI URL |
[44] |
S. Wang, Y. Sun, J. Yang, B. Duan, L. Wu, W. Zhang, J. Yang, Energy Environ. Sci., 9(2016), pp. 3436-3447.
DOI URL |
[45] | A. Zevalkink, D.M. Smiadak, J.L. Blackburn, A.J. Ferguson, M.L. Chabinyc, O. Delaire, J. Wang, K. Kovnir, J. Martin, L.T. Schelhas, T.D. Sparks, S.D. Kang, M.T. Dylla, G.J. Snyder, B.R. Ortiz, E.S. Toberer, Appl. Phys. Rev., 5 (2018), Article 021303. |
[1] | Bo Cheng, Yuanhua Lin, Jinle Lan, Yong Liu, Cewen Nan. Preparation of In2O3-Sr2RuErO6 Composite Ceramics by the Spark Plasma Sintering and Their Thermoelectric Performance [J]. J Mater Sci Technol, 2011, 27(12): 1165-1168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||