J. Mater. Sci. Technol. ›› 2021, Vol. 66: 186-192.DOI: 10.1016/j.jmst.2020.07.007
• Research Article • Previous Articles Next Articles
Jiashen Menga, Ziang Liua, Xiong Liua, Wei Yanga, Lianzhou Wangb, Yan Lic, Yuan-Cheng Caod, Xingcai Zhange,*(), Liqiang Maia,*(
)
Received:
2020-05-07
Revised:
2020-05-28
Accepted:
2020-05-29
Published:
2021-03-10
Online:
2021-04-01
Contact:
Xingcai Zhang,Liqiang Mai
About author:
mlq518@whut.edu.cn (L. Mai).Jiashen Meng, Ziang Liu, Xiong Liu, Wei Yang, Lianzhou Wang, Yan Li, Yuan-Cheng Cao, Xingcai Zhang, Liqiang Mai. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction[J]. J. Mater. Sci. Technol., 2021, 66: 186-192.
Fig. 1. Schematic illustration of the template formation process of nitrogen-doped carbon hollow frameworks, including low-pressure vapor superassembly, in situ carbonization and template removal.
Fig. 2. Characterizations of core-shell ZnO@ZIF-8 nanoparticles. (a) SEM image. (b) TEM image. (c) XRD pattern. (d) FTIR spectra of ZnO, ZIF-8 and ZnO@ZIF-8. (e, f) N2 adsorption-desorption isotherms and pore size distribution of ZnO and ZnO@ZIF-8 nanoparticles. (g-k) SEM image and corresponding EDS elemental maps of Zn, N, C and O.
Fig. 3. Characterizations of nitrogen-doped carbon hollow frameworks. (a, b) SEM images. (c, d) TEM images. (e) HRTEM image. (f) SAED pattern. (g-j) HAADF-STEM image and the corresponding EDS elemental maps for C, N and O.
Fig. 4. Structural characterizations of the obtained NC-700, NC-800 and NC-900 samples. (a) XRD patterns. (b) Raman spectra. (c) The relative contents of C, N and H obtained from elemental analysis. (d) XPS spectra. (e) High-resolution N 1s XPS spectra, which were divided into pyridinic N, pyrrolic N and graphitic N. (f) The corresponding contents.
Fig. 5. ORR electrocatalytic performances of NC-700, NC-800 and NC-900 samples. (a) LSV curves of NC-700, NC-800 and NC-900 samples in O2-saturated 0.1 M KOH at a scan rate of 5 mV·s-l and 1600 rpm. (b) Jk at 0.8 V and E1/2 for NC-700, NC-800 and NC-900 samples, respectively. (c) LSV curves of NC-800 in O2-saturated 0.1 M KOH at a scan rate of 5 mV·s-l and different rotation rates. Inset of (c) is Koutecky-Levich plots and electron transfer number. (d) RRDE voltammograms recorded with NC-800 in O2-saturated 0.1 M KOH at 1600 rpm. (e) Peroxide yields and electron numbers of NC-800 at various potentials based on RRDE data. (f) Chronoamperometric curves of NC-800 and Pt/C in O2-saturated 0.1 M KOH at 1225 rpm and 0.8 V versus RHE.
Fig. 6. (a) Schematic model of a graphene sheet with a hole. (b) Work function summary of pure graphene and various N-doped graphene with different nitrogen species and contents. (c) Calculated total densities of states of pure Gr, graphitic N-Gr (8.06 %), pyridinic N-Gr (8.06 %) and pyrrolic N-Gr (7.81 %) near the Fermi level. (d-g) The corresponding electron density differences in different N-doped graphene structures. Brown and gray balls represent C and N atoms, respectively. Yellow and blue areas represent the increased and decreased electron density, respectively.
[1] |
S. Chu, Y. Cui, N. Liu, Nat. Mater. 16 (2016) 16-22.
DOI URL PMID |
[2] |
V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16 (2016) 57-69.
DOI URL PMID |
[3] | J. Meng, H. Guo, C. Niu, Y. Zhao, L. Xu, Q. Li, L. Mai, Joule 1 (2017) 522-547. |
[4] | J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler, Z. Chen, Adv. Mater. 29 (2017), 1604685. |
[5] |
J. Meng, C. Niu, L. Xu, J. Li, X. Liu, X. Wang, Y. Wu, X. Xu, W. Chen, Q. Li, Z. Zhu, D. Zhao, L. Mai, J. Am. Chem. Soc. 139 (2017) 8212-8221.
URL PMID |
[6] | C. Tang, Q. Zhang, Adv. Mater. 29 (2017), 1604103. |
[7] | J. Zhu, Z. Xiong, J. Zheng, Z. Luo, G. Zhu, C. Xiao, Z. Meng, Y. Li, K. Luo, J. Mater. Sci. Technol. 35 (2019) 2543-2551. |
[8] |
F. Cheng, J. Chen, Chem. Soc. Rev. 41 (2012) 2172-2192.
DOI URL PMID |
[9] | H. Cui, Z. Zhou, D. Jia, Mater. Horiz. 4 (2017) 7-19. |
[10] | C.G. Hu, L.M. Dai, Angew. Chem. Int. Ed. 55 (2016) 11736-11758. |
[11] | S. Fu, C. Zhu, J. Song, M.H. Engelhard, X. Li, P. Zhang, H. Xia, D. Du, Y. Lin, Nano Res. 10 (2016) 1888-1895. |
[12] |
Q. Wu, L. Yang, X. Wang, Z. Hu, Acc. Chem. Res. 50 (2017) 435-444.
DOI URL PMID |
[13] | J.-L. Ma, F.-L. Meng, D. Xu, X.-B. Zhang, Energy Storage Mater. 6 (2017) 1-8. |
[14] |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Science 355 (2017), eaad4998.
DOI URL PMID |
[15] | C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. Int. Ed. 56 (2017) 13944-13960. |
[16] | H. Fan, Y. Wang, F. Gao, L. Yang, M. Liu, X. Du, P. Wang, L. Yang, Q. Wu, X. Wang, Z. Hu, J. Energy Chem. 34 (2019) 64-71. |
[17] |
Y. Ito, Y. Shen, D. Hojo, Y. Itagaki, T. Fujita, L. Chen, T. Aida, Z. Tang, T. Adschiri, M. Chen, Adv. Mater. 28 (2016) 10644-10651.
DOI URL PMID |
[18] |
D. Li, C. Lv, L. Liu, Y. Xia, X. She, S. Guo, D. Yang, ACS Cent. Sci. 1 (2015) 261-269.
DOI URL PMID |
[19] |
F. Wang, S. Song, K. Li, J. Li, J. Pan, S. Yao, X. Ge, J. Feng, X. Wang, H. Zhang, Adv. Mater. 28 (2016) 10679-10683.
DOI URL PMID |
[20] |
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323 (2009) 760-764.
DOI URL PMID |
[21] |
Q. Liu, Y. Wang, L. Dai, J. Yao, Adv. Mater. 28 (2016) 3000-3006.
DOI URL PMID |
[22] |
X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 43 (2014) 7067-7098.
DOI URL PMID |
[23] | Y. Du, S. Khan, X. Zhang, G. Yu, R. Liu, B. Zheng, R. Nadimicherla, D. Wu, R. Fu, Carbon 149 (2019) 144-151. |
[24] | J. Wu, F. Xu, S. Li, P. Ma, X. Zhang, Q. Liu, R. Fu, D. Wu, Adv. Mater. 31 (2019), 1802922. |
[25] |
H.B. Yang, J.W. Miao, S.F. Hung, J.Z. Chen, H.B. Tao, X.Z. Wang, L.P. Zhang, R. Chen, J.J. Gao, H.M. Chen, L.M. Dai, B. Liu, Sci. Adv. 2 (2016), e1501122.
DOI URL PMID |
[26] |
H. Fei, J. Dong, D. Chen, T. Hu, X. Duan, I. Shakir, Y. Huang, X. Duan, Chem. Soc. Rev. 48 (2019) 5207-5241.
DOI URL PMID |
[27] | J. Han, G. Huang, Z. Wang, Z. Lu, J. Du, H. Kashani, M. Chen, Adv. Mater. 30 (2018), 1803588. |
[28] |
P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Nat. Chem. 8 (2016) 718-724.
DOI URL PMID |
[29] | H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Chem 2 (2017) 52-80. |
[30] | Q. Lai, Y. Zhao, Y. Liang, J. He, J. Chen, Adv. Funct. Mater. 26 (2016) 8334-8344. |
[31] | H.X. Zhong, J. Wang, Y.W. Zhang, W.L. Xu, W. Xing, D. Xu, Y.F. Zhang, X.B. Zhang, Angew. Chem. Int. Ed. 53 (2014) 14235-14239. |
[32] | L. Chai, L. Zhang, X. Wang, L. Xu, C. Han, T.-T. Li, Y. Hu, J. Qian, S. Huang, Carbon 146 (2019) 248-256. |
[33] | A. Mahmood, W. Guo, H. Tabassum, R. Zou, Adv. Energy Mater. 6 (2016), 2600423. |
[34] |
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 138 (2016) 10226-10231.
DOI URL PMID |
[35] |
F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 5 (2014) 5261.
DOI URL PMID |
[36] | Y. Segawa, H. Ito, K. Itami, Nat. Rev. Mater. 1 (2016) 15002. |
[37] |
M. Zhou, H.-L. Wang, S. Guo, Chem. Soc. Rev. 45 (2016) 1273-1307.
DOI URL PMID |
[38] |
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 351 (2016) 361-365.
DOI URL PMID |
[39] |
J. Meng, X. Liu, J. Li, Q. Li, C. Zhao, L. Xu, X. Wang, F. Liu, W. Yang, X. Xu, Z. Liu, C. Niu, L. Mai, Nano Lett. 17 (2017) 7773-7781.
DOI URL PMID |
[40] | R. Liu, S.M. Mahurin, C. Li, R.R. Unocic, J.C. Idrobo, H. Gao, S.J. Pennycook, S. Dai, Angew. Chem. Int. Ed. 50 (2011) 6799-6802. |
[41] | Y. Wang, H. Zou, S. Zeng, Y. Pan, R. Wang, X. Wang, Q. Sun, Z. Zhang, S. Qiu, Chem. Commun. 51 (2015) 12423-12426. |
[42] |
Y. Yang, S. Jin, Z. Zhang, Z. Du, H. Liu, J. Yang, H. Xu, H. Ji, ACS Appl. Mater. Interfaces 9 (2017) 14180-14186.
DOI URL PMID |
[43] |
W. Zhang, Z.Y. Wu, H.L. Jiang, S.H. Yu, J. Am. Chem. Soc. 136 (2014) 14385-14388.
DOI URL PMID |
[44] |
J.Y. Cheon, J.H. Kim, J.H. Kim, K.C. Goddeti, J.Y. Park, S.H. Joo, J. Am. Chem. Soc. 136 (2014) 8875-8878.
DOI URL PMID |
[45] | D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Angew. Chem. Int. Ed. 52 (2013) 371-375. |
[46] |
S. Chen, Y. Yan, P. Hao, M. Li, J. Liang, J. Guo, Y. Zhang, S. Chen, W. Ding, X. Guo, ACS Appl. Mater. Interfaces 12 (2020) 12686-12695.
DOI URL PMID |
[47] | X. Liu, K. Ni, C. Niu, R. Guo, W. Xi, Z. Wang, J. Meng, J. Li, Y. Zhu, P. Wu, Q. Li, J. Luo, X. Wu, L. Mai, ACS Catal. 9 (2019) 2275-2285. |
[48] |
H. Kim, K. Lee, S.I. Woo, Y. Jung, Phys. Chem. Chem. Phys. 13 (2011) 17505-17510.
DOI URL PMID |
[49] | L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Energy Environ. Sci. 5 (2012) 7936-7942. |
[1] | Zhihong Luo, Fujie Li, Chengliang Hu, Liankun Yin, Degui Li, Chenhao Ji, Xiangqun Zhuge, Kui Zhang, Kun Luo. Highly dispersed silver nanoparticles for performance-enhanced lithium oxygen batteries [J]. J. Mater. Sci. Technol., 2021, 73(0): 171-177. |
[2] | Meigui Xu, Hainan Sun, Wei Wang, Yujuan Shen, Wei Zhou, Jun Wang, Zhi-Gang Chen, Zongping Shao. Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution [J]. J. Mater. Sci. Technol., 2020, 39(0): 22-27. |
[3] | Zhu Jie, Xiong Zewei, Zheng Jiming, Luo Zhihong, Zhu Guangbin, Xiao Chao, Meng Zhengbing, Li Yibing, KunLuo. Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction [J]. J. Mater. Sci. Technol., 2019, 35(11): 2543-2551. |
[4] | Hengheng Xia, Yexin Zhang, Chunlin Chen, Wenlin Wu, Ken Yao, Jian Zhang. Ozone-Mediated Functionalization of Multi-Walled Carbon Nanotubes and Their Activities for Oxygen Reduction Reaction [J]. J. Mater. Sci. Technol., 2016, 32(6): 533-538. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||