J. Mater. Sci. Technol. ›› 2020, Vol. 57: 65-69.DOI: 10.1016/j.jmst.2020.03.048
• Research Article • Previous Articles Next Articles
J. Hua,b, J.X. Lia,c, Y.-N. Shia,*()
Received:
2019-12-26
Accepted:
2020-03-10
Published:
2020-11-15
Online:
2020-11-20
Contact:
Y.-N. Shi
J. Hu, J.X. Li, Y.-N. Shi. Suppression of grain boundary migration at cryogenic temperature in an extremely fine nanograined Ni-Mo alloy[J]. J. Mater. Sci. Technol., 2020, 57: 65-69.
Composition(g/L) | NiSO4·2H2O | 60 |
---|---|---|
Na3C6H5O7·2H2O | 80 | |
Na2MoO4·2H2O | 5 | |
Saccharin | 2 | |
2-butyne-1,4-diol | 0.15 | |
pH | ~9 | |
Temperature (°C) | 35 | |
Current density (mA/cm2) | 30 |
Table 1 Electrolyte composition and deposition parameters of Ni-14.2Mo alloy.
Composition(g/L) | NiSO4·2H2O | 60 |
---|---|---|
Na3C6H5O7·2H2O | 80 | |
Na2MoO4·2H2O | 5 | |
Saccharin | 2 | |
2-butyne-1,4-diol | 0.15 | |
pH | ~9 | |
Temperature (°C) | 35 | |
Current density (mA/cm2) | 30 |
Fig. 1. Typical BF (a) and DF (b) TEM images of the as-deposited ng Ni-14.2Mo. Insets in (a) and (b) are the corresponding SAED pattern and histogram of grain size distribution, respectively, exhibiting randomly orientated tiny grains and homogeneous grain size distribution.
Fig. 2. (a) Microhardness (H) at different holding time for the ng Ni-14.2Mo at RT and LNT, where circles and squares are the experimental data, the dotted lines are the corresponding fitting lines with Eq. (3). (b) Variation of strain rate against holding time of ng Ni-14.2Mo. (c) Logarithmic plots of hardness as a function of indentation strain rate ε˙ for the ng Ni-14.2Mo at RT and LNT. Strain rate sensitivity m was estimated from the slope of the linear fit.
Fig. 3. DF images of ng Ni-14.2Mo taken underneath the indented surface (indicated by the black dashed lines) at RT (a) and LNT (b), respectively. Insets in (a) and (b) are the corresponding histograms of grain size distribution respectively. The cumulative area fractions of grains versus grain size in the subsurface layer of ng Ni-14.2Mo sample before and after microhardness test at RT and LNT are shown in (c). Clearly, very little grain coarsening occurred at LNT.
Fig. 4. Cross-sectional BF (a) and DF (b) TEM images of ng Ni-14.2Mo after microhardness test at LNT. Inset in (a) is the SAED pattern where a slight texture is observed. Two parallel red dashed lines in the enlarged BF (c) and DF (d) TEM images outline a shear band. Black dashed lines in (a, c) and white dashed lines in (b, d) designate the indented surface. Inset in (d) is the corresponding cumulative area fraction of grains against grain size. (e) HRTEM image taken from a shear band. (f) Enlarged image of area “A” as outlined in (e), where multiple parallel stacking faults are observed.
[1] | K. Lu, Nat. Rev. Mater. 1(2016) 16019. |
[2] | M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51(2006) 427-556. |
[3] | J.A. Knapp, D.M. Follstaedt, J. Mater. Res. 19(2004) 218-227. |
[4] | F.D. Torre, H. Van Swygenhoven, M. Victoria, Acta Mater. 50 (2002) 3957-3970. |
[5] | H.Q. Sun, Y.N. Shi, M.X. Zhang, Surf. Coat. Technol. 202(2008) 2859-2864. |
[6] | H.W. Huang, Z.B. Wang, J. Lu, K. Lu, Acta Mater. 87(2015) 150-160. |
[7] | C.A. Schuh, T.G. Nieh, H. Iwasaki, Acta Mater. 51(2003) 431-443. |
[8] | J. Schiotz, K.W. Jacobsen, Science 301 (2003) 1357-1359. |
[9] |
T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Science 326 (2009) 1686-1690.
URL PMID |
[10] |
Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Science 305 (2004) 654-657.
URL PMID |
[11] | J. Schiotz, F.D. Di Tolla, K.W. Jacobsen, Nature 391 (1998) 561-563. |
[12] | T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587-1590. |
[13] | J.W. Cahn, Y.M. Mishin, A. Suzuki, Acta Mater. 54(2006) 4953-4975. |
[14] | A. Suzuki, Y. Mishin, in: M. Naka, T. Yamane (Eds.), New Frontiers of Processing and Engineering in Advanced Materials, 2005, pp. 157-162. |
[15] | F. Sansoz, V. Dupont, Appl. Phys. Lett. 89(2006), 111901. |
[16] | K. Zhang, J.R. Weertman, J.A. Eastman, Appl. Phys. Lett. 87(2005), 061921. |
[17] | T. Gorkaya, T. Burlet, D.A. Molodov, G. Gottstein, Scr. Mater. 63 (2010) 633-636. |
[18] | A. Rajabzadeh, M. Legros, N. Combe, F. Mompiou, D.A. Molodov, Philos. Mag. Abingdon (Abingdon) 93(2013) 1299-1316. |
[19] | D.S. Gianola, B.G. Mendis, X.M. Cheng, K.J. Hemker, Mater. Sci. Eng.A 483-484(2008) 637-640. |
[20] | Y. Zhang, G.J. Tucker, J.R. Trelewicz, Acta Mater. 131(2017) 39-47. |
[21] |
J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292-1296.
URL PMID |
[22] | X.G. Zheng, J. Hu, J.X. Li, Y.N. Shi, Nanomaterials 9 (2019) 546. |
[23] | J. Hu, X.G. Zheng, Y.-N. Shi, K. Lu, J. Electrochem. Soc. 164(2017) D348-D353. |
[24] | Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Mater. Sci. Eng. A 381 (2004) 71-79. |
[25] | R. Roumina, B. Raeisinia, R. Mahmudi, J. Mater. Sci. Lett. 22(2003) 1435-1437. |
[26] | K.A. Padmanabhan, P. Mondal, H. Hahn, J. Mater. Sci. 40(2005) 6113-6120. |
[27] | R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Acta Mater. 51 (2003) 5159-5172. |
[28] | F.D. Torre, H.V. Swygenhoven, M. Victoria, Acta Mater. 50(2002) 3957-3970. |
[29] | C. Gu, J. Lian, Q. Jiang, Z. Jiang, Mater. Sci. Eng. A 459 (2007) 75-81. |
[30] | H.W. Hoppel, J. May, P. Eisenlohr, A. Goken, Z. Metallkd. 96(2005) 566-571. |
[31] | H. Vehoff, D. Lemaire, K. Schueler, T. Waschkies, B. Yang, Int. J. Mater. Res. 98(2007) 259-268. |
[32] | F.D. Torre, P. Spätig, R. Schäublin, M. Victoria, Acta Mater. 53 (2005) 2337-2349. |
[33] | Y.M. Wang, E.M. Bringa, J.M. McNaney, M. Victoria, A. Caro, A.M. Hodge, R. Smith, B. Torralva, B.A. Remington, C.A. Schuh, H. Jamarkani, M.A. Meyers, Appl. Phys. Lett. 88(2006), 061917. |
[34] | Q. Wei, D. Jia, K.T. Ramesh, E. Ma, Appl. Phys. Lett. 81(2002) 1240-1242. |
[35] | Y. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Roesner, T. Scherer, H.J. Fecht, Acta Mater. 57(2009) 3391-3401. |
[36] |
A. Khalajhedayati, T.J. Rupert, Sci. Rep. 5(2015) 10663.
URL PMID |
[37] | J. Schaefer, K. Albe, Scr. Mater. 66(2012) 315-317. |
[1] | Jing Zhou, Qianqian Wang, Qiaoshim Zeng, Kuibo Yin, Anding Wang, Junhua Luan, Litao Sun, Baolong Shen. A plastic FeNi-based bulk metallic glass and its deformation behavior [J]. J. Mater. Sci. Technol., 2021, 76(0): 20-32. |
[2] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[3] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Chen Chen, Tan Wang, Jianzhong Jiang, Tingwei Hu, Shaokang Guan, Fushan Li. Toughening FeMn-based high-entropy alloys via retarding phase transformation [J]. J. Mater. Sci. Technol., 2020, 51(0): 167-172. |
[4] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Tan Wang, Chen Chen, Jianzhong Jiang, Tingwei Hu, Fushan Li. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures [J]. J. Mater. Sci. Technol., 2020, 57(0): 153-158. |
[5] | Weitao Jia, Qichi Le, Yan Tang, Yunpeng Ding, Fangkun Ning, Jianzhong Cui. Role of pre-vertical compression in deformation behavior of Mg alloy AZ31B during super-high reduction hot rolling process [J]. J. Mater. Sci. Technol., 2018, 34(11): 2069-2083. |
[6] | Junwei Qiao. In-situ Dendrite/Metallic Glass Matrix Composites: A Review [J]. J. Mater. Sci. Technol., 2013, 29(8): 685-701. |
[7] | Yongbo XU, Yilong BAI, M.A.Meyers. Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strain Rate Loading in Titanium and Its Alloys [J]. J Mater Sci Technol, 2006, 22(06): 737-746. |
[8] | Yufeng SUN, Yuren WANG, Bingchen WEI, Weihuo LI. Preparation of Cu-based Bulk Metallic Glass Matrix Composites [J]. J Mater Sci Technol, 2006, 22(01): 73-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||