J. Mater. Sci. Technol. ›› 2020, Vol. 53: 163-173.DOI: 10.1016/j.jmst.2020.02.075
• Research Article • Previous Articles Next Articles
Fang Miaoa, Qianqian Wanga,*(
), Siyi Dia, Lu Yuna, Jing Zhoua, Baolong Shena,b,**(
)
Received:2020-01-04
Revised:2020-02-24
Accepted:2020-02-25
Published:2020-09-15
Online:2020-09-21
Contact:
Qianqian Wang,Baolong Shen
Fang Miao, Qianqian Wang, Siyi Di, Lu Yun, Jing Zhou, Baolong Shen. Enhanced dye degradation capability and reusability of Fe-based amorphous ribbons by surface activation[J]. J. Mater. Sci. Technol., 2020, 53: 163-173.
Fig. 3. UV-vis absorbance spectra of AO7 solutions during the redox reactions using (a) AQ and (b) BM ribbons; (c) normalized concentration change of AO7 solutions during the degradation process; (d) the ln (C0/Ct) vs. time curves for AQ and BM ribbons (T = 298 K, pH = 3, ribbon dosage = 10 g/L, CAO7 = 20 mg/L).
Fig. 4. Normalized concentration change of AO7 solutions at different degradation cycles during the redox reactions using (a) AQ ribbons and (c) BM ribbons; surface morphologies of (b) AQ ribbons after 2 degradation cycles and (d) BM ribbons after 12 degradation cycles.
Fig. 6. MFM images of the magnetic structure on the (a) free and (b) wheel surfaces of AQ ribbons; MFM images of the magnetic structure on the (c) free and (d) wheel surfaces of BM ribbons. Height distributions on the (e) free surfaces of AQ and BM ribbons; height distributions on the (f) wheel surfaces of AQ and BM ribbons.
Fig. 7. SEM micrographs of AQ ribbons (a) before and (c) after reactions; SEM micrographs of BM ribbons (b) before and (d) after reactions. Insets show the compositions of corresponding samples obtained from EDS measurements.
Fig. 8. (a) Polarization curves and (b) Nyquist plots derived from EIS measurements for AQ and BM ribbons in AO7 solutions, and the insets correspond to the equivalent circuits.
Fig. 9. (a) Normalized concentration change of AO7 solutions using AQ, BM and AN ribbons during the degradation process, the inset shows the XRD curve of AN ribbons; SEM micrographs of AN ribbons (b) before and (c) after reactions.
| [1] | C. Suryanarayana, A. Inoue, Int. Mater. Rev. 58 (2013) 131-166. |
| [2] |
K.F. Yao, C.Q. Zhang, Appl. Phys. Lett. 90 (2007), 061901.
DOI URL |
| [3] | F.B. Zhang, J.L. Wu, W. Jiang, Q.Z. Hu, B. Zhang, ACS Appl. Mater. Int. 9 (2017) 31340-31344. |
| [4] |
Z. Jia, X.G. Duan, P. Qin, W.C. Zhang, W.M. Wang, C. Yang, H.Q. Sun, S.B. Wang, L.C. Zhang, Adv. Funct. Mater. 27 (2017), 1702258.
DOI URL |
| [5] |
S.Q. Chen, G.N. Yang, S.T. Luo, S.J. Yin, J.L. Jia, Z. Li, S.H. Gao, Y. Shao, K.F. Yao, J. Mater. Chem. A 5 (2017) 14230-14240.
DOI URL |
| [6] | Q.Q. Wang, M.X. Chen, P.H. Lin, Z.Q. Cui, C.L. Chu, B.L. Shen, J. Mater. Chem. A 6 (2018) 10686-10699. |
| [7] |
W.M. Yang, Q.Q. Wang, W.Y. Li, L. Xue, H.S. Liu, J. Zhou, J.Y. Mo, B.L. Shen, Mater. Des. 161 (2019) 136-146.
DOI URL |
| [8] |
Y. Tang, Y. Shao, N. Chen, X. Liu, S.Q. Chen, K.F. Yao, RSC Adv. 5 (2015) 34032-34039.
DOI URL |
| [9] | L.C. Zhang, Z. Jia, F. Lyu, S.X. Liang, J. Lu, Prog. Mater. Sci. 105 (2019), 100576. |
| [10] |
L.C. Zhang, S.X. Liang, Chem-Asian J. 13 (2018) 3575-3592.
DOI URL PMID |
| [11] | C.Q. Zhang, Z.W. Zhu, H.F. Zhang, Z.Q. Hu, J. Environ, SciChina 24 (2012) 1021-1026. |
| [12] |
S.H. Xie, P. Huang, J.J. Kruzic, X.R. Zeng, H.X. Qian, Sci. Rep. 6 (2016) 21947.
DOI URL PMID |
| [13] |
J.Q. Wang, Y.H. Liu, M.W. Chen, G.Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Adv. Funct. Mater. 22 (2012) 2567-2570.
DOI URL |
| [14] | P.P. Wang, J.Q. Wang, J.T. Hou, W. Xu, X.M. Wang, G. Wang, Sci. China Phys. Mech. 60 (2017) 82-86. |
| [15] |
S.Q. Chen, N. Chen, M.T. Cheng, S.T. Luo, Y. Shao, K.F. Yao, Intermetallics 90 (2017) 30-35.
DOI URL |
| [16] |
S.X. Liang, Z. Jia, Y.J. Liu, W.C. Zhang, W.M. Wang, J. Lu, L.C. Zhang, Adv. Mater. 30 (2018), 1802764.
DOI URL |
| [17] |
Z. Jia, W.C. Zhang, W.M. Wang, D. Habibi, L.C. Zhang, Appl. Catal. B: Environ. 192 (2016) 46-56.
DOI URL |
| [18] |
J.Q. Wang, Y.H. Liu, M.W. Chen, D.V. Louzguine-luzgin, A. Inoue, J.H. Perepezko, Sci. Rep. 2 (2012) 418.
URL PMID |
| [19] |
S.Q. Chen, Y. Shao, M.T. Cheng, K.F. Yao, J. Non-Cryst. Solids 473 (2017) 74-78.
DOI URL |
| [20] |
Y.H. Sun, A. Concustell, A.L. Greer, Nat. Rev. Mater. 1 (2016) 16039.
DOI URL |
| [21] | A.L. Greer, Y.H. Sun, Philos. Mag. Abingdon (Abingdon) 96 (2016) 1643-1663. |
| [22] |
M. Wakeda, J. Saida, J. Li, S. Ogata, Sci. Rep. 5 (2015) 10545.
DOI URL PMID |
| [23] |
J. Pan, Y.X. Wang, Q. Guo, D. Zhang, A.L. Greer, Y. Li, Nat. Commun. 9 (2018) 560.
URL PMID |
| [24] |
W. Dmowski, Y. Yokoyama, A. Chuang, Y. Ren, M. Umemoto, K. Tsuchiya, A. Inoue, T. Egami, Acta Mater. 58 (2010) 429-438.
DOI URL |
| [25] |
C.C. Yang, X.F. Bian, J.F. Yang, Funct. Mater. Lett. 7 (2014), 1450028.
DOI URL |
| [26] |
B. Lin, X.F. Bian, P. Wang, G.P. Luo, Mater. Sci. Eng. B 177 (2012) 92-95.
DOI URL |
| [27] |
Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, Appl. Catal. B-Environ. 204 (2017) 537-547.
DOI URL |
| [28] |
M. Tejedor, J.A. Garcia, J. Carrizo, L. Elbaile, J. Mater. Sci. 32 (1997) 2337-2340.
DOI URL |
| [29] |
M. Stylidi, D.I. Kondarides, X.E. Verykios, Appl. Catal. B: Environ. 47 (2004) 189-201.
DOI URL |
| [30] |
F. Miao, Q.Q. Wang, Q.S. Zeng, L. Hou, T. Liang, Z.Q. Cui, B.L. Shen, J. Mater. Sci. Technol. 38 (2020) 107-118.
DOI URL |
| [31] |
S.X. Liang, Z. Jia, W.C. Zhang, X.F. Li, W.M. Wang, H.C. Lin, L.C. Zhang, Appl. Catal. B: Environ. 221 (2018) 108-118.
DOI URL |
| [32] | S.X. Liang, X.Q. Wang, W.C. Zhang, Y.J. Liu, W.M. Wang, L.C. Zhang, Appl. Mater. Today 19 (2020), 100543. |
| [33] | S.X. Liang, W.C. Zhang, L.N. Zhang, W.M. Wang, L.C. Zhang, Sustain. Mater. Technol. 22 (2019), e00126. |
| [34] |
Z. Jia, Q. Wang, L. Sun, Q. Wang, L.C. Zhang, G. Wu, J.H. Luan, Z.B. Jiao, A.D. Wang, S.X. Liang, M. Gu, J. Lu, Adv. Funct. Mater. 29 (2019), 1807857.
DOI URL |
| [35] |
S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Nature 524 (2015) 200-203.
URL PMID |
| [36] | W.L. Song, X.H. Meng, Y. Wu, D. Cao, H. Wang, X.J. Liu, X.Z. Wang, Z.P. Lu, Sci. Bull. (Beijing) 63 (2018) 840-844. |
| [37] |
J. Pan, Q. Chen, L. Liu, Y. Li, Acta Mater. 59 (2011) 5146-5158.
DOI URL |
| [38] |
J. Qiang, K. Tsuchiya, J. Alloys. Compd. 712 (2017) 250-255.
DOI URL |
| [39] |
A. Slipenyuk, J. Eckert, Scr. Mater. 50 (2004) 39-44.
DOI URL |
| [40] |
L.Y. Guo, X. Wang, K.C. Shen, K.B. Kim, S. Lan, X.L. Wang, W.M. Wang, J. Mater. Sci. Technol. 35 (2019) 118-126.
DOI URL |
| [41] |
H.S. Chen, Appl. Phys. Lett. 29 (1976) 328-330.
DOI URL |
| [42] |
J.D. Livingston, W.G. Morris, J. Appl. Phys. 57 (1985) 3555-3559.
DOI URL |
| [43] | J.D. Livingston, Phys. Stat. Sol. 56 (1979) 637-645. |
| [44] |
M.E. Hawley, G.W. Brown, D.J. Markiewicz, F. Spaepen, E.P. Barth, J. Magn. Magn. Mater. 190 (1998) 89-97.
DOI URL |
| [45] | L.Q. Shen, P. Luo, Y.C. Hu, H.Y. Bai, Y.H. Sun, B.A. Sun, Y.H. Liu, W.H. Wang, Nat.Commun. 9 (2018) 4414. |
| [46] |
S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, L.C. Zhang, Mater. Des. 119 (2017) 244-253.
DOI URL |
| [47] |
Q.Q. Wang, L. Yun, M.X. Chen, D.D. Xu, Z.Q. Cui, Q.S. Zeng, P.H. Lin, C.L. Chu, B.L. Shen, ACS Appl. Nano Mater. 2 (2019) 214-227.
DOI URL |
| [48] |
K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Chem. Mater. 22 (2010) 1392-1401.
DOI URL |
| [49] |
S. Narayanasamy, J. Jayaprakash, Chem. Eng. J. 343 (2018) 258-269.
DOI URL |
| [50] |
Q.Y. Niu, K.Z. Gao, Q.H. Tang, L.Z. Wang, L.F. Han, H. Fang, Y. Zhang, S.W. Wang, L.X. Wang, Carbon 123 (2017) 290-298.
DOI URL |
| [51] |
Y.J. Kim, I.Y. Jang, K.C. Park, Y.C. Jung, T. Oka, S. Iinou, Y. Komori, T. Kozutsumi, T. Hashiba, Y.A. Kim, M. Endo, Electrochim. Acta 55 (2010) 5624-5628.
DOI URL |
| [52] |
J.J. Wang, Y.H. Ma, S. Feng, J.D. Wang, J. Coat. Technol. Res. 16 (2019) 827-834.
DOI URL |
| [53] |
G. Sahoo, R. Balasubramaniam, Corros. Sci. 50 (2008) 131-143.
DOI URL |
| [54] |
J.H. Shen, J.J. Horng, Y.S. Wang, Y.R. Zeng, Chemosphere 182 (2017) 364-372.
DOI URL PMID |
| [55] |
L. Zhang, X. Gao, Z.X. Zhang, M.B. Zhang, Y.Q. Cheng, J.X. Su, Sci. Rep. 6 (2016) 31797.
DOI URL PMID |
| [56] |
G.X. Quan, L.J. Kong, Y.Q. Lan, B. Gao, Appl. Clay Sci. 152 (2018) 173-182.
DOI URL |
| [57] | G.X. Quan, W.J. Sun, J.L. Yan, Y.Q. Lan, Water Air Soil Pollut. Focus. 225 (2014) 2195-2205. |
| [58] |
W.E. Thung, S.A. Ong, L.N. Ho, Y.S. Wong, F. Ridwan, H.K. Lehl, Y.L. Oon, Y.S. Oon, Chem. Eng. J. 336 (2018) 397-405.
DOI URL |
| [59] |
P. Bansal, D. Singh, D. Sud, Sep. Purif. Technol. 72 (2010) 357-365.
DOI URL |
| [60] |
C.X. Zhang, Y.B. Sun, Z.Q. Yu, G.Y. Zhang, J.W. Feng, Chemosphere 191 (2018) 527-536.
DOI URL PMID |
| [61] |
Y. Xu, L. Lin, Y.K. Li, H. Zhang, Sci. Total Environ. 609 (2017) 644-654.
DOI URL PMID |
| [62] |
S.D. Yan, W.H. Xiong, S.Y. Xing, Y.Q. Shao, R. Guo, H. Zhang, Sci. Total Environ. 599 (2017) 1181-1190.
DOI URL PMID |
| [63] |
T.C. Wang, G.Z. Qu, J.Y. Ren, Q.H. Sun, D.L. Liang, S.B. Hu, J. Hazard. Mater. 302 (2016) 65-71.
DOI URL PMID |
| [1] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
| [2] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
| [3] | K.S. Chin, S. Idapalapati, D.T. Ardi. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 100-106. |
| [4] | Jianwei Tang, Liang Chen, Guoqun Zhao, Cunsheng Zhang, Xingrong Chu. Formation mechanism and evolution of surface coarse grains on a ZK60 Mg profile extruded by a porthole die [J]. J. Mater. Sci. Technol., 2020, 47(0): 88-102. |
| [5] | Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. J. Mater. Sci. Technol., 2020, 40(0): 88-98. |
| [6] | Adnan Tahir, Guang-Rong Li, Mei-Jun Liu, Guan-Jun Yang, Cheng-Xin Li, Yu-Yue Wang, Chang-Jiu Li. Improving WC-Co coating adhesive strength on rough substrate: Finite element modeling and experiment [J]. J. Mater. Sci. Technol., 2020, 37(0): 1-8. |
| [7] | Chengsong Liu, Daoxin Liu, Xiaohua Zhang, Dan Liu, Amin Ma, Ni Ao, Xingchen Xu. Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process [J]. J. Mater. Sci. Technol., 2019, 35(8): 1555-1562. |
| [8] | Jie Huang, Kai-Ming Zhang, Yun-Fei Jia, Cheng-Cheng Zhang, Xian-Cheng Zhang, Xian-Feng Ma, Shan-Tung Tu. Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment [J]. J. Mater. Sci. Technol., 2019, 35(3): 409-417. |
| [9] | Chun Li, Xiaoqing Si, Jian Cao, Junlei Qi, Zhibo Dong, Jicai Feng. Residual stress distribution as a function of depth in graphite/copper brazing joints via X-ray diffraction [J]. J. Mater. Sci. Technol., 2019, 35(11): 2470-2476. |
| [10] | Xixi Niu, Haoqiang Zhang, Zhiliang Pei, Nanlin Shi, Chao Sun, Jun Gong. Measurement of interfacial residual stress in SiC fiber reinforced Ni-Cr-Al alloy composites by Raman spectroscopy [J]. J. Mater. Sci. Technol., 2019, 35(1): 88-93. |
| [11] | Xiaomei Liu, Hao Cui, Shangzhou Zhang, Haipo Liu, Gaofeng Liu, Shujun Li. Experimental and numerical investigations on fatigue behavior of aluminum alloy 7050-T7451 single lap four-bolted joints [J]. J. Mater. Sci. Technol., 2018, 34(7): 1205-1213. |
| [12] | Xinqiang Zhang, Yunfei Xue, Haifeng Zhang, Huameng Fu, Zhengbin Wang, Zhihua Nie, Lu Wang. Thermal Residual Stresses in W Fibers/Zr-based Metallic Glass Composites by High-energy Synchrotron X-ray Diffraction [J]. J. Mater. Sci. Technol., 2015, 31(2): 159-163. |
| [13] | Y.M. Liu, D.Y. Deng, H. Lei, Z.L. Pei, C.L. Jiang, C. Sun, J. Gong. Effect of Nitrogen Content on Microstructures and Mechanical Properties of WB2(N) Films Deposited by Reactive Magnetron Sputtering [J]. J. Mater. Sci. Technol., 2015, 31(12): 1217-1225. |
| [14] | Yanli Song, Lin Hua. Mechanism of Residual Stress Reduction in Low Alloy Steel by a Low Frequency Alternating Magnetic Treatment [J]. J. Mater. Sci. Technol., 2012, 28(9): 803-808. |
| [15] | Lizeng Ling Shiguo Long Zengsheng Ma Xu Liang. Numerical Study on the Effects of Equi-biaxial Residual Stress on Mechanical Properties of Nickel Film by Means of Nanoindentation [J]. J Mater Sci Technol, 2010, 26(11): 1001-1005. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
