J. Mater. Sci. Technol. ›› 2020, Vol. 53: 126-131.DOI: 10.1016/j.jmst.2020.02.077
• Research Article • Previous Articles Next Articles
Zhenzhu Wang, Menglei Sun, Jiangfeng Ni*(), Liang Li*(
)
Received:
2020-02-01
Revised:
2020-02-27
Accepted:
2020-02-28
Published:
2020-09-15
Online:
2020-09-21
Contact:
Jiangfeng Ni,Liang Li
Zhenzhu Wang, Menglei Sun, Jiangfeng Ni, Liang Li. Nature-inspired Cu2O@CoO tree-like architecture for robust storage of sodium[J]. J. Mater. Sci. Technol., 2020, 53: 126-131.
Fig. 2. Morphological characterization of Cu2O@CoO: SEM images of (a) top view and (b) side view. (c) TEM image showing a single Cu2O nanorod attached with numerous CoO nanowires; (d) EDS elemental mapping of O, Co, and Cu; (e-g) High-resolution TEM images of showing the lattice fringes of (f) CoO and (g) Cu2O.
Fig. 3. Structural characterization: (a) XRD patterns of Cu2O@CoO, Cu2O nanorod and CoO nanowire; Core-level XPS spectra of (b) O 1s, (c) Cu 2p3/2, and (d) Co 2p for Cu2O@CoO.
Fig. 4. Electrochemical sodium storage in Cu2O@CoO: (a) Galvanostatic curves of Cu2O@CoO, Cu2O and CoO upon initial cycles. (b) CV curves of Cu2O@CoO at a rate of 0.5 mV s-1 upon initial cycles. (c) CV curves of Cu2O@CoO at various scanning rates. (d) Comparison of rate cycling performance of Cu2O@CoO, Cu2O, and CoO. (e) Cycling performance of Cu2O@CoO at a fixed rate of 1 C.
Anode | Potential range (V) | Rate capability | Capacity retention |
---|---|---|---|
CoO microflower [ | 0.01-3 | 20 mAh g-1 at 0.6 C | 278 mAh g-1/100 cycles |
Co/CoO/N-C [ | 0.01-3 | 218 mAh g-1 at 1 C | 219 mAh g-1/100 cycles |
Ti-CoO@C [ | 0.01-3 | 236 mAh g-1 at 1 C | 285 mAh g-1/100 cycles |
CoO-NCNTs [ | 0.01-3 | 470 mAh g-1 at 1 C | 373 mAh g-1/300 cycles |
CuO@Cu2O [ | 0.005-3 | 274 mAh g-1 at 1 C | 415 mAh g-1/50 cycles |
Cu2O/Cu2S-RGO [ | 0.01-3 | 258 mAh g-1 at 0.6 C | 200 mAh g-1/200 cycles |
This work | 0.01-3 | 356 mAh g-1 at 1 C | 306 mAh g-1/300 cycles |
Table 1 Electrochemical sodium storage of Cu2O@CoO in comparison with those of recently reported CoO and Cu2O anodes. 1 C is arbitrarily designated as 500 mA g-1.
Anode | Potential range (V) | Rate capability | Capacity retention |
---|---|---|---|
CoO microflower [ | 0.01-3 | 20 mAh g-1 at 0.6 C | 278 mAh g-1/100 cycles |
Co/CoO/N-C [ | 0.01-3 | 218 mAh g-1 at 1 C | 219 mAh g-1/100 cycles |
Ti-CoO@C [ | 0.01-3 | 236 mAh g-1 at 1 C | 285 mAh g-1/100 cycles |
CoO-NCNTs [ | 0.01-3 | 470 mAh g-1 at 1 C | 373 mAh g-1/300 cycles |
CuO@Cu2O [ | 0.005-3 | 274 mAh g-1 at 1 C | 415 mAh g-1/50 cycles |
Cu2O/Cu2S-RGO [ | 0.01-3 | 258 mAh g-1 at 0.6 C | 200 mAh g-1/200 cycles |
This work | 0.01-3 | 356 mAh g-1 at 1 C | 306 mAh g-1/300 cycles |
Fig. 5. Mechanism understanding of Cu2O@CoO upon electrochemical Na+ storage by ex situ XRD. (a) Galvanostatic curve. The letters denote the stage where XRD data were collected. (b) XRD patterns.
[1] |
C. Delmas, Adv. Energy Mater. 8 (2018), 1703137.
DOI URL |
[2] | J. Ni, Funct. Mater. Lett. 11 (2018), 1802001. |
[3] | M.A. Munoz-Marquez, D. Saurel, J.L. Gomez-Camer, M. Casas-Cabanas, E. Castillo-Martinez, T. Rojo, Adv. Energy Mater. 7 (2017), 1700463. |
[4] | Q. Zhang, X. Zhang, W. He, G. Xu, M. Ren, J. Liu, X. Yang, F. Wang, J. Mater. Sci. Technol. 35 (2019) 2396-2403. |
[5] | J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu, L. Li, Adv. Energy Mater. 6 (2016), 1502568. |
[6] | J. Ni, M. Sun, L. Li, Adv. Mater. 31 (2019), 1902603. |
[7] | J. Ni, L. Li, J. Lu, ACS Energy Lett. 3 (2018) 1137-1144. |
[8] | Y. Lyu, Y. Liu, Z.E. Yu, N. Su, Y. Liu, W. Li, Q. Li, B. Guo, B. Liu, Sustain. Mater. Technol. 21 (2019), e00098. |
[9] | M. Sun, Y. Jiang, J. Ni, L. Li, J. Mater. Sci. Technol. 34 (2018) 1969-1976. |
[10] |
Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie, Q. Liu, Y. Wang, J. Wu, X. Wang, J. Tu, Adv. Energy Mater. 9 (2019), 1803342.
DOI URL |
[11] |
X. Zhu, M. Sun, J. Ni, L. Li, Sci. China Chem. 61 (2018) 1494-1502.
DOI URL |
[12] |
X. Li, J. Ni, S.V. Savilov, L. Li, Chem. Eur. J. 24 (2018) 13719-13727.
DOI URL PMID |
[13] | J. Ni, X. Bi, Y. Jiang, L. Li, J. Lu, Nano Energy 34 (2017) 356-366. |
[14] | X. Xia, J. Xie, S. Zhang, B. Pan, G. Cao, X. Zhao, J. Mater. Sci. Technol. 33 (2017) 775-780. |
[15] |
F. Klein, B. Jache, A. Bhide, P. Adelhelm, Phys. Chem. Chem. Phys. 15 (2013) 15876-15887.
URL PMID |
[16] | H. Xu, G. Zhu, B. Hao, J. Mater. Sci. Technol. 35 (2019) 100-108. |
[17] |
T. Mori, H. Tanaka, A. Dalui, N. Mitoma, K. Suzuki, M. Matsumoto, N. Aggarwal, A. Patnaik, S. Acharya, L.K. Shrestha, H. Sakamoto, K. Itami, K. Ariga, Angew. Chem. Int. Ed. 57 (2018) 9679-9683.
DOI URL |
[18] |
Y. Wang, Y. Yu, Y. Tan, T. Li, Y. Chen, S. Wang, K. Sui, H. Zhang, Y. Luo, X. Li, Adv. Energy Mater. 10 (2020) 1903233.
DOI URL |
[19] |
J. Xu, M. Wang, N.P. Wickramaratne, M. Jaroniec, S. Dou, L. Dai, Adv. Mater. 27 (2015) 2042-2048.
DOI URL PMID |
[20] | J. Ni, Y. Jiang, F. Wu, J. Maier, Y. Yu, L. Li, Adv. Funct. Mater. 28 (2018), 1707179. |
[21] | X.Y. Fan, J. Han, Y.L. Ding, Y.P. Deng, D. Luo, X. Zeng, Z. Jiang, L. Gou, D.L. Li, Z. Chen, Adv. Energy Mater. 9 (2019), 1900673. |
[22] | T. Ding, J. Xu, C. Chen, Z. Luo, J. Dai, Y. Tian, C. Chen, J. Mater. Sci. Technol. 33 (2017) 271-275. |
[23] | S. Xiong, J.S. Chen, X.W. Lou, H.C. Zeng, Adv. Funct. Mater. 22 (2012) 861-871. |
[24] |
J. Wang, Q. Zhang, X. Li, D. Xu, Z. Wang, H. Guo, K. Zhang, Nano Energy 6 (2014) 19-26.
DOI URL |
[25] |
H. Liang, J. Ni, L. Li, Nano Energy 33 (2017) 213-220.
DOI URL |
[26] |
J. Ni, Y. Han, L. Gao, L. Lu, Electrochem. Commun. 31 (2013) 84-87.
DOI URL |
[27] | J. Ni, Y. Zhao, T. Liu, H. Zheng, L. Gao, C. Yan, L. Li, Adv. Energy Mater. 4 (2014), 1400798. |
[28] |
W. Wang, H. Liang, L. Zhang, S.V. Savilov, J. Ni, L. Li, Nano Res. 10 (2017) 229-237.
DOI URL |
[29] | A. Buljan, M. Llunell, E. Ruiz, P. Alemany, Chem. Mater. 13 (2001) 338-344. |
[30] |
Y. Zhao, T. Liu, H. Xia, L. Zhang, J. Jiang, M. Shen, J. Ni, L. Gao, J. Mater. Chem. A 2 (2014) 13854-13858.
DOI URL |
[31] |
S. Fu, J. Ni, Y. Xu, Q. Zhang, L. Li, Nano Lett. 16 (2016) 4544-4551.
DOI URL PMID |
[32] |
X. Zhang, W. Qin, D. Li, D. Yan, B. Hu, Z. Sun, L. Pan, Chem. Commun. 51 (2015) 16413-16416.
DOI URL |
[33] |
H. Liu, H. Zheng, L. Li, S. Jia, S. Meng, F. Cao, Y. Lv, D. Zhao, J. Wang, Adv. Mater. Interfaces 5 (2018), 1701255.
DOI URL |
[34] |
Y.V. Kaneti, J. Zhang, Y.B. He, Z. Wang, S. Tanaka, M.S.A. Hossain, Z. Pan, B. Xiang, Q. Yang, Y. Yamauchi, J. Mater. Chem. A 5 (2017) 15356-15366.
DOI URL |
[35] |
L. Chang, K. Wang, L. Huang, Z. He, S. Zhu, M. Chen, H. Shao, J. Wang, J. Mater. Chem. A 5 (2017) 20892-20902.
DOI URL |
[36] |
J. Li, D. Wang, J. Zhou, L. Hou, F. Gao, ChemElectroChem 6 (2019) 917-927.
DOI URL |
[37] |
Y. Pang, S. Chen, C. Xiao, S. Ma, S. Ding, J. Mater. Chem. A 7 (2019) 4126-4133.
DOI URL |
[38] |
K. Wang, Y. Huang, Y. Zhu, M. Yu, M. Wang, ChemElectroChem 5 (2018) 630-636.
DOI URL |
[1] | Chen Chen, Ying Huang, Zhuoyue Meng, Mengwei Lu, Zhipeng Xu, Panbo Liu, Tiehu Li. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage [J]. J. Mater. Sci. Technol., 2021, 76(0): 11-19. |
[2] | Haiyang Yu, Zhenzhu Wang, Jiangfeng Ni, Liang Li. Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage [J]. J. Mater. Sci. Technol., 2021, 67(0): 237-242. |
[3] | D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, A.B. Podgorbunsky, A.Yu. Ustinov, V.Yu. Mayorov, V.G. Kuryavyi, S.L. Sinebryukhov. Vanadium-doped TiO2-B/anatase mesoporous nanotubes with improved rate and cycle performance for rechargeable lithium and sodium batteries [J]. J. Mater. Sci. Technol., 2020, 54(0): 181-189. |
[4] | Changwei Tang, Xiaohui Ning, Jian Li, Hui-Lin Guo, Ying Yang. Modulating conductivity type of cuprous oxide (Cu2O) films on copper foil in aqueous solution by comproportionation [J]. J. Mater. Sci. Technol., 2019, 35(8): 1570-1577. |
[5] | Xingzhou Li, Jili Wu, Ye Pan. Preparation of nanostructured Cu/Zr metal mixed oxides via self-sustained oxidation of a CuZr binary amorphous alloy [J]. J. Mater. Sci. Technol., 2019, 35(8): 1601-1606. |
[6] | Mingyue Li, Na Yuan, Yiwen Tang, Ling Pei, Yongdan Zhu, Jiaxian Liu, Lihua Bai, Meiya Li. Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles [J]. J. Mater. Sci. Technol., 2019, 35(4): 604-609. |
[7] | Menglei Sun, Yu Jiang, Jiangfeng Ni, Liang Li. Application of materials based on group VB elements in sodium-ion batteries: A review [J]. J. Mater. Sci. Technol., 2018, 34(11): 1969-1976. |
[8] | Lawrence E. Murr, Sara M. Gaytan, Diana A. Ramirez, Edwin Martinez, Jennifer Hernandez, Krista N. Amato, Patrick W. Shindo, Francisco R. Medina, Ryan B. Wicker. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies [J]. J Mater Sci Technol, 2012, 28(1): 1-14. |
[9] | Qingwei Zhu, Yihe Zhang, Jiajun Wang, Fengshan Zhou, Paul K. Chu. Microwave Synthesis of Cuprous Oxide Micro-/Nanocrystals with Different Morphologies and Photocatalytic Activities [J]. J Mater Sci Technol, 2011, 27(4): 289-295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||