J. Mater. Sci. Technol. ›› 2020, Vol. 48: 114-122.DOI: 10.1016/j.jmst.2020.03.005
• Research Article • Previous Articles Next Articles
Bo Yanga, Xianghe Penga,b,*(), Yinbo Zhaoa, Deqiang Yina, Tao Fua, Cheng Huangc,**(
)
Received:
2019-12-20
Accepted:
2020-01-28
Published:
2020-07-01
Online:
2020-07-13
Contact:
Xianghe Peng,Cheng Huang
Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48: 114-122.
Systems | Geometric parameters (?) | Elastic parameters (GPa) | |||||
---|---|---|---|---|---|---|---|
B0 | E100 | E110 | E111 | G100 | G111-110 | ||
Diamond | a = b = c = 3.575 | 434 | 1026 | 1128 | 1166 | 555 | 491 |
cBN | a = b = c = 3.625 | 376 | 948 | 952 | 873 | 444 | 341 |
B0 | Ep | Ev | |||||
Lonsdaleite | a = b = 2.514, c = 4.184 | 483 | 1285 | 1173 | |||
wBN | a = b = 2.554, c = 4.225 | 374 | 1009 | 909 |
Table 1 Geometric parameters and elastic parameters of diamond, lonsdaleite, cBN and wBN.
Systems | Geometric parameters (?) | Elastic parameters (GPa) | |||||
---|---|---|---|---|---|---|---|
B0 | E100 | E110 | E111 | G100 | G111-110 | ||
Diamond | a = b = c = 3.575 | 434 | 1026 | 1128 | 1166 | 555 | 491 |
cBN | a = b = c = 3.625 | 376 | 948 | 952 | 873 | 444 | 341 |
B0 | Ep | Ev | |||||
Lonsdaleite | a = b = 2.514, c = 4.184 | 483 | 1285 | 1173 | |||
wBN | a = b = 2.554, c = 4.225 | 374 | 1009 | 909 |
Fig. 2. Schematic diagrams of polycrystalline sample of diamond and lonsdaleite mixture. (a-d) diamond/lonsdaleite biphases with four different stacking sequences, with white regions and yellow regions denoting diamond and lonsdaleite (Lon) regions, respectively; (e) <011 > STEM image from Canyon Diablo sample; one of {111} stacking faults, indicated by dotted white line; (f) Structure model of the region marked with white corners in (g) (Reproduced from Ref. [13]); (g) and (h) high angle HAADF-STEM image and annular bright-field STEM image of atomic structure of cBN/wBN biphases (reproduced from Ref. [24]).
Fig. 3. (a) and (b) Snapshots from ab initio MD simulations, with structural changes in diamond/lonsdaleite biphases at T = 1200 K; (c-f) Snapshots of 4L + D, (3 + 1)L + D, (2 + 1 + 1)L + D, and (1 + 1+1 + 1)L + D diamond/lonsdaleite biphases at T = 1200 K.
Fig. 4. (a) Comparison between σ-ε curves of diamond/lonsdaleite biphases and those of diamond sheared along ESD and along HSD under pure shear; (b) comparison between σ-ε curve of cBN/wBN biphases and those of cBN sheared along ESD and along HSD under pure shear; (c)-(g) key structural snapshots of 4L + D at ε0 = 0, ε1 = 0.24, ε2 = 0.25, ε3 = 0.40, and ε4 = 0.41, respectively, with yellow regions denoting lonsdaleite (Lon) regions and b denoting Burgers vector a0/6 [112ˉ].
Fig. 5. (a) Calculated GSFE curves along (111)<112> slip system, with γUg and γUs denoting respectively energy barrier on glide-set and shuffle-set planes, and γIg stable GSFE on glide-set plane. (b), (c) and (d) atomic configurations in three key structures in (111)<112> slip system: (b) initial biphasic configuration, (c) unstable configuration, and (d) stable cubic configuration.
Fig. 6. σ-ε and E-ε curves under pure shear. (a) 4L + D; (b) (3 + 1)L + D; (c) (2 + 1 + 1)L + D; (d) (1 + 1+1 + 1)L + D; (e) 4w + c;(f) (3 + 1)w + c; (g) (2 + 1 + 1)w + c; (h) (1 + 1+1 + 1)w + c.
Fig. 7. (a) Comparison between σ-ε curve of diamond/lonsdaleite biphases and those of diamond sheared along ESD and along HSD under σzz = 200 GPa; (b) comparison between σ-ε curve of cBN/wBN biphases and those of cBN sheared along ESD and along HSD under σzz = 200 GPa; (c)-(g) structural snapshots of (3 + 1)L + D at ε0 = 0, ε1 = 0.22, ε2 = 0.23, ε3 = 0.30, and ε4 = 0.31, respectively, with yellow regions denoting lonsdaleite (Lon) regions and b denoting Burgers vector a0/6 [112ˉ].
Fig. 8. (a) Comparison between σ-ε curve of diamond/lonsdaleite biphases and those of diamond sheared along ESD and along HSD under σzz=σzxtan68; (b) comparison between σ-ε curve of cBN/wBN biphases and those of cBN sheared along ESD and along HSD under σzz=σzxtan68° ; (c-g) structural snapshots of 4L + D at ε0 = 0, ε1 = 0.21, ε2 = 0.22, and ε3 = 0.42, respectively, with yellow regions denoting lonsdaleite (Lon) regions and b denoting Burgers vector a0/6 [112ˉ].
Systems | σzz =0 GPa | σzz = σzx tan68° GPa | σzx = 200 GPa |
---|---|---|---|
Diamond-easy | 89.9 | 95.5 | 100.0 |
Diamond-hard | 134..3 | 145.9 | 200.7 |
Lonsdaleite | 106.9 | 160.1 | 200.2 |
4L + D | 130.0 | 141.8 | 200.0 |
Table 2 Comparison of peak shear stress component (σzx) under uniaxial and biaxial stress states.
Systems | σzz =0 GPa | σzz = σzx tan68° GPa | σzx = 200 GPa |
---|---|---|---|
Diamond-easy | 89.9 | 95.5 | 100.0 |
Diamond-hard | 134..3 | 145.9 | 200.7 |
Lonsdaleite | 106.9 | 160.1 | 200.2 |
4L + D | 130.0 | 141.8 | 200.0 |
[1] |
C. Huang, X. Peng, T. Fu, Y. Zhao, C. Feng, Z. Lin, Q. Li, Appl. Surf. Sci. 392 (2017) 215-224.
DOI URL |
[2] |
Q. Huang, D.L. Yu, B. Xu, W.T. Hu, Y.M. Ma, Y.B. Wang, Z.S. Zhao, B. Wen, J.L. He, Z.Y. Liu, Y.J. Tian, Nature 510 ( 2014) 250.
URL PMID |
[3] |
B. Yang, X. Peng, C. Huang, D. Yin, H. Xiang, T. Fu, ACS Appl. Mater. Interfaces 10 ( 2018) 42804-42811.
DOI URL PMID |
[4] | C. Huang, X. Peng, B. Yang, H. Xiang, S. Sun, X. Chen, Q. Li, D. Yin, T. Fu, Carbon 132 ( 2018) 606-615. |
[5] | C. Huang, X. Peng, B. Yang, X. Chen, Q. Li, D. Yin, T. Fu, Carbon 136 ( 2018) 320-328. |
[6] |
C. Chen, Z. Wang, T. Kato, N. Shibata, T. Taniguchi, Y. Ikuhara, Nat. Commun. 6 (2015) 6327.
URL PMID |
[7] | B. Yang, X. Peng, S. Sun, C. Huang, D. Yin, X. Chen, T. Fu, Nanomaterials 9 (8) ( 2019) 1117. |
[8] | B. Yang, X. Peng, C. Huang, Y. Zhao, X. Chen, G. Zhang, T. Fu, J. Alloys Compd. 805 (2019) 1090-1095. |
[9] | B. Yang, X. Peng, C. Huang, Z. Wang, D. Yin, T. Fu, Carbon 150 ( 2019) 1-7. |
[10] | C. Frondel, U.B. Marvin, Nature 214 ( 1967) 587-589. |
[11] |
A.G. Kvashnin, P.B. Sorokin, J. Phys. Chem. Lett. 5 (2014) 541-548.
DOI URL PMID |
[12] | L. Qingkun, S. Yi, L. Zhiyuan, Z. Yu, Scr. Mater. 65 (2011) 229-232. |
[13] | P. Nemeth, L.A. Garvie, T. Aoki, N. Dubrovinskaia, L. Dubrovinsky, P.R. Buseck, Nat. Commun. 5 (2014) 6447. |
[14] |
K. Tanigaki, H. Ogi, H. Sumiya, K. Kusakabe, N. Nakamura, M. Hirao, H. Ledbetter, Nat. Commun. 4 (2013) 2343.
URL PMID |
[15] | R.S. Clarke, D.E. Appleman, D.R. Ross, Nature 291 ( 5814) ( 1981) 396-398. |
[16] | Z. Pan, H. Sun, Y. Zhang, C. Chen, Phys. Rev. Lett. 102 (2009), 055503. |
[17] | Y. Tian, H. Liu, B.W. Sheldon, T.J. Webster, S. Yang, H. Yang, L. Yang, J. Mater. Sci. Technol. 35 (2019) 817-823. |
[18] | S. Liu, L. Han, Y. Zou, P. Zhu, B. Liu, J. Mater. Sci. Technol. 33 (2017) 1386-1391. |
[19] | Q. Tao, J. Wang, L. Fu, Z. Chen, C. Shen, D. Zhang, Z. Sun, J. Mater. Sci. Technol. 33 (2017) 1210-1218. |
[20] | V.N. Denisov, B.N. Mavrin, N.R. Serebryanaya, G.A. Dubitsky, V.V. Aksenenkov, A.N. Kirichenko, N.V. Kuzmin, B.A. Kulnitskiy, I.A. Perezhogin, V.D. Blank, Diam. Relat. Mater. 20 (2011) 951-953. |
[21] | Christoph G. Salzmann, Benjamin J. Murray, Jacob J. Shephard, Diam. Relat. Mater. 59 (2015) 69-72. |
[22] |
M. Murri, R.L. Smith, K. McColl, M. Hart, M. Alvaro, A.P. Jones, P. Németh, C.G. Salzmann, F. Corà, M.C. Domeneghetti, F. Nestola, N.V. Sobolev, S.A. Vishnevsky, A.M. Logvinova, P.F. McMillan, Sci. Rep. 9 (2019) 10334.
URL PMID |
[23] |
W. Baek, S.A. Gromilov, A.V. Kuklin, E.A. Kovaleva, A.S. Fedorov, A.S. Sukhikh, M. Hanfland, V.A. Pomogaev, I.A. Melchakova, P.V. Avramov, K.V. Yusenko, Nano Lett. 19 (2019) 1570-1576.
DOI URL PMID |
[24] |
C. Chen, D. Yin, T. Kato, T. Taniguchi, K. Watanabe, X. Ma, H. Ye, Y. Ikuhara, Proc Natl. Acad. Sci. U. S. A. 116 (2019) 11181-11186.
URL PMID |
[25] | G. Kresse, J. Furthmuller, Phys. Rev. B 54 ( 1996) 11169-11186. |
[26] | G. Kresse, D. Joubert, Phys. Rev. B 59 ( 1999) 1758-1775. |
[27] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868. |
[28] | H.J. McSkimin, P. Andreatch, J. Appl. Phys. 43 (1972) 2944-2948. |
[29] | H. Yao, L. Ouyang, W.-Y. Ching, J. Am. Ceram. Soc. 90 (2007) 3194-3204. |
[30] | L. Sun, X. He, J. Lu, NPJ Comput. Mater. 4 (2018) 6. |
[31] | G. Wu, K.C. Chan, L. Zhu, L. Sun, J. Lu, Nature 545 ( 2017) 80-83. |
[32] |
X. Zhou, X.Y. Li, K. Lu, Science 360 ( 2018) 526-530.
DOI URL |
[33] |
D. Yin, C. Chen, Nat. Mater. 18 (2019) 19-23.
DOI URL PMID |
[34] |
Z. Wang, M. Saito, K.P. McKenna, L. Gu, S. Tsukimoto, A.L. Shluger, Y. Ikuhara, Nature 479 ( 2011) 380-383.
URL PMID |
[35] |
Z. Wang, L. Gu, M. Saito, S. Tsukimoto, M. Tsukada, F. Lichtenberg, Y. Ikuhara, J. Georg, Adv. Mater. 25 (2) ( 2013) 218-222.
URL PMID |
[36] |
A. Banerjee, D. Bernoulli, H.T. Zhang, M.F. Yuen, J.B. Liu, J.C. Dong, F. Ding, J. Lu, M. Dao, W.J. Zhang, Y. Lu, S. Suresh, Science 360 ( 2018) 300-302.
URL PMID |
[37] |
A. Nie, Y. Bu, P. Li, Y. Zhang, T. Jin, J. Liu, Z. Su, Y. Wang, J. He, Z. Liu, H. Wang, Y. Tian, W. Yang, Nat. Commun. 10 (2019) 5533.
DOI URL |
[38] |
B. Li, H. Sun, C. Chen, Phys. Rev. Lett. 117 (2016), 116103.
URL PMID |
[39] | D.R. Kripalani, A.A. Kistanov, Y. Cai, M. Xue, K. Zhou, Phys. Rev. B 98 ( 2018), 085410. |
[40] |
D. Rodney, M. Fivel, R. Dendievel, Phys. Rev. Lett. 95 (2005), 108004.
URL PMID |
[41] | K.K. Chawla, M.A. Meyers, Mechanical Behavior of Materials, Cambridge University Press, New York, 2009, pp. 95-104. |
[42] | Y. Zhao, X. Peng, T. Fu, C. Huang, H. Xiang, N. Hu, C. Yan, Materialia 2 ( 2018) 148-156. |
[43] | R.F. Zhang, S. Veprek, A.S. Argon, Phys. Rev. B 77 ( 2008), 172103. |
[44] | Y. Zhang, H. Sun, C. Chen, Phys. Rev. B 73 ( 2006), 144115. |
[45] |
Y. Zhang, H. Sun, C. Chen, Phys. Rev. Lett. 94 (2005), 145505.
URL PMID |
[46] | D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, F. Willaime, Acta Mater. 124 (2017) 633-659. |
[47] | H. Xiang, H. Li, T. Fu, C. Huang, X. Peng, Acta Mater. 138 (2017) 131-139. |
[48] | B. Xu, L. Capolungo, D. Rodney, Scr. Mater. 68 (2013) 901-904. |
[49] |
D. Kraus, A. Ravasio, M. Gauthier, D.O. Gericke, J. Vorberger, S. Frydrych, J. Helfrich, L.B. Fletcher, G. Schaumann, B. Nagler, B. Barbrel, B. Bachmann, E.J. Gamboa, S. Gode, E. Granados, G. Gregori, H.J. Lee, P. Neumayer, W. Schumaker, T. Doppner, R.W. Falcone, S.H. Glenzer, M. Roth, Nat. Commun. 7 (2016) 10970.
URL PMID |
[50] |
N. Dubrovinskaia, V.L. Solozhenko, N. Miyajima, V. Dmitriev, O.O. Kurakevych, L. Dubrovinsky, Appl. Phys. Lett. 90 (2007), 101912.
DOI URL |
[51] |
C. Lu, Q. Li, Y. Ma, C. Chen, Phys. Rev. Lett. 119 (2017), 115503.
URL PMID |
[1] | Shi Tao, Wei Zhou, Dajun Wu, Zhicheng Wang, Bin Qian, Wangsheng Chu, Augusto Marcelli, Li Song. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 230-236. |
[2] | Gang Qin, Ruirun Chen, Huiting Zheng, Hongze Fang, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition [J]. J. Mater. Sci. Technol., 2019, 35(4): 578-583. |
[3] | Peng Jia, Leipeng Duan, Kang Wang, Engang Wang. Magnetic properties and magnetocaloric effects of Gd65(Cu,Co,Mn)35 amorphous ribbons [J]. J. Mater. Sci. Technol., 2019, 35(10): 2283-2287. |
[4] | Lintao Gui, Mujun Long, Shixin Wu, Hua Zheng, Zhihua Dong, Jianguo Li, Dengfu Chen, Yunwei Huang, Yunwei Huang, Huamei Duan, Levente Vitos. Quantitative effects of phase transition on solute partition coefficient, inclusion precipitation, and microsegregation for high-sulfur steel solidification [J]. J. Mater. Sci. Technol., 2019, 35(10): 2383-2395. |
[5] | B. Wurentuya, Shuang Ma, B. Narsu, O. Tegus, Zhidong Zhang. Lattice dynamics of FeMnP0.5Si0.5 compound from first principles calculation [J]. J. Mater. Sci. Technol., 2019, 35(1): 127-133. |
[6] | Zhishuai Xu, Yuting Dai, Yue Fang, Zhiping Luo, Ke Han, Changjiang Song, Qijie Zhai, Hongxing Zheng. High-temperature phase transition behavior and magnetocaloric effect in a sub-rapidly solidified La-Fe-Si plate produced by centrifugal casting [J]. J. Mater. Sci. Technol., 2018, 34(8): 1337-1343. |
[7] | Gang Qin, Shu Wang, Ruirun Chen, Xue Gong, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2018, 34(2): 365-369. |
[8] | Yan-Jia Liou, Wu-Jang Huang. High Temperature Phase Transitions of Graphene Oxide Paper from Graphite Oxide Solution [J]. J. Mater. Sci. Technol., 2014, 30(11): 1088-1091. |
[9] | Shijie Zhang, Xibin Cao, Yingqiang Luan, Xinxin Ma, Xiaohui Lin, Xianren Kong. Preparation and Properties of Smart Thermal Control and Radiation Protection Materials for Multi-functional Structure of Small Spacecraft [J]. J Mater Sci Technol, 2011, 27(10): 879-884. |
[10] | Yunfeng WU, Ping ZHANG, Jianzhou ZHENG. Critical Property of the Geometric Phase in the Dicke Model with the Dipole-dipole Interactions [J]. J Mater Sci Technol, 2008, 24(06): 960-962. |
[11] | K.Haddadi, L.Louail, D.Maouche. Elastic Properties of Potassium Halides under Pressure [J]. J Mater Sci Technol, 2008, 24(02): 241-244. |
[12] | Xinglun TANG, Xiuhua ZHENG. Raman Scattering and t-Phase Lattice Vibration of 3% (mole fraction) Y2O3-ZrO2 [J]. J Mater Sci Technol, 2004, 20(05): 485-489. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||