J. Mater. Sci. Technol. ›› 2020, Vol. 43: 64-73.DOI: 10.1016/j.jmst.2020.01.031
• Research Article • Previous Articles Next Articles
Xiaohua Shaad, Wen Yueab*(), Haichao Zhanga, Wenbo Qina, Dingshun Sheab, Chengbiao Wangac*(
)
Received:
2019-07-05
Accepted:
2019-10-04
Published:
2020-04-15
Online:
2020-04-26
Contact:
Yue Wen,Wang Chengbiao
Xiaohua Sha, Wen Yue, Haichao Zhang, Wenbo Qin, Dingshun She, Chengbiao Wang. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders[J]. J. Mater. Sci. Technol., 2020, 43: 64-73.
Fig. 1. Typical characteristics of the Ti-coated diamond powders: (a) SEM image of the Ti-coated diamond powders; (b, c) the corresponding EDS maps marked in the yellow detecting position of (a); (d) the XRD pattern of the Ti-coated diamond powders; (e) AES elemental depth profile of the Ti-coated diamond powders (sputtering rate: 15 nm/min); (f) particle size distribution of the Ti-coated diamond powders (D50 = 23.75 μm).
Fig. 2. Characteristics of the Ti-PCD: (a) AFM photography of the Ti-PCD surface; (b) SEM image of the Ti-PCD; (c-e) the corresponding EDS maps of (b); (f) EDS surface chemical composition marked in the yellow detecting position of (b) and (g) XRD pattern of the Ti-PCD.
Fig. 3. DSC and TG curves of (a) the uncoated diamond powders, (b) the Ti-coated diamond powders, (c) the P-PCD and (d) the Ti-PCD heated under flowing air from 20 °C to 1200 °C.
Fig. 6. Typical SEM micrographs and corresponding EDS maps of the annealed Ti-PCD surfaces in air: (a) RT; (b) 700 °C; (c) 750 °C; (d) 800 °C; (e) 850 °C; (f) 900 °C.
Fig. 9. SEM image and EDS of the Ti-PCD surface annealed at 850 °C in air: (a) the enlarged SEM image; (b, c) the EDS surface chemical composition marked in the yellow detecting position of (a).
Fig. 12. Wear rates of the PCD discs annealed at different temperatures. The black scatters reveal the wear rates of Ti-PCD annealed at different temperatures, and the red scatters show those of the P-PCD [18].
|
[1] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[2] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[3] | Beibei Jiang, Donghui Wen, Qing Wang, Jinda Che, Chuang Dong, Peter K. Liaw, Fen Xu, Lixian Sun. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance [J]. J. Mater. Sci. Technol., 2019, 35(6): 1008-1016. |
[4] | Wei Sun, Fuzhi Dai, Huimin Xiang, Jiachen Liu, Yanchun Zhou. General trends in surface stability and oxygen adsorption behavior of transition metal diborides (TMB2) [J]. J. Mater. Sci. Technol., 2019, 35(4): 584-590. |
[5] | Xuejin Yang, Bin Li, Duan Li, Changwei Shao, Changrui Zhang, Chunrong Zou, Kun Liu. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave-transparent composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2761-2766. |
[6] | Jihua Peng, Dongyi Su, Chengxi Wang. Combined Effect of Aluminum Content and Layer Structure on the Oxidation Performance of Ti1-xAlxN Based Coatings [J]. J. Mater. Sci. Technol., 2014, 30(8): 803-807. |
[7] | Zhaofeng Chen, Wangping Wu, Xiangna Cong. Oxidation Resistance Coatings of Ir–Zr and Ir by Double Glow Plasma [J]. J. Mater. Sci. Technol., 2014, 30(3): 268-274. |
[8] | Xiyuan Yao, Hejun Li, Yulei Zhang, Yongjie Wang. Oxidation and Mechanical Properties of SiC/SiC–MoSi2–ZrB2 Coating for Carbon/Carbon Composites [J]. J. Mater. Sci. Technol., 2014, 30(2): 123-127. |
[9] | Ming Luo, Yawei Li, Shengli Jin, Shaobai Sang, Lei Zhao. Microstructural Evolution and Oxidation Resistance of Multi-walled Carbon Nanotubes in the Presence of Silicon Powder at High Temperatures [J]. J Mater Sci Technol, 2012, 28(7): 599-605. |
[10] | Y.C. Ma, X.J. Zhao, M. Gao, K. Liu. High-Temperature Oxidation Behavior of a Ni-Cr-W-Al Alloy [J]. J Mater Sci Technol, 2011, 27(9): 841-845. |
[11] | Beiyue Ma Qiang Zhu Yong Sun Jingkun Yu Ying Li. Synthesis of Al2O3-SiC Composite and Its Effect on the Properties of Low-carbon MgO-C Refractories [J]. J Mater Sci Technol, 2010, 26(8): 715-720. |
[12] | Xiaofu ZHANG, Anxian LU, Yu WANG. New Vitrified Bond Diamond Grinding Wheel for Grinding the Cylinder of Polycrystalline Diamond Compacts [J]. J Mater Sci Technol, 2007, 23(05): 672-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||