J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (11): 2178-2182.DOI: 10.1016/j.jmst.2018.03.015
• Orginal Article • Previous Articles Next Articles
Yahui Liua, Shifeng Liuab*(), Chao Dengab, Haiyang Fanc, Xiaoli Yuand, Qing Liua
Received:
2017-12-13
Revised:
2018-02-08
Accepted:
2018-03-20
Online:
2018-11-20
Published:
2018-11-26
Contact:
Liu Shifeng
Yahui Liu, Shifeng Liu, Chao Deng, Haiyang Fan, Xiaoli Yuan, Qing Liu. Inhomogeneous deformation of {111}
C | N | H | O | Nb | Mo | W | Ti | Si | Fe | Ni | Ta |
---|---|---|---|---|---|---|---|---|---|---|---|
9 | 20 | 2 | 30 | 6.4 | 0.14 | 0.61 | <0.001 | <0.005 | <0.005 | <0.005 | Balance |
Table 1 Chemical composition of high purity Ta ingot (wt ppm).
C | N | H | O | Nb | Mo | W | Ti | Si | Fe | Ni | Ta |
---|---|---|---|---|---|---|---|---|---|---|---|
9 | 20 | 2 | 30 | 6.4 | 0.14 | 0.61 | <0.001 | <0.005 | <0.005 | <0.005 | Balance |
Fig. 1. Orientation imaging map (OIM) for grains after 87% rolled. (a) OIM for 87% rolled sample, (b) the region R1 in Fig. 1(a), (c) the kernel average misorientation (KAM) for R1 in Fig. 1 (a). Step size 1.2 μm for Fig. 1a, and 35 nm for Fig. 1b and 1c.
Fig. 4. Misorientations corresponding to the testing line in block 4 and block 17, respectively. (a) Misorientation for the line in block 4, (b) Misorientation for the line in block 17.
Fig. 5. Grain boundary map and corresponding grain reference orientation deviation-hyper (GROD-Hyper) for block 4 and block 17, respectively. (a) and (c) are for block 4, (b) and (d) are for block 17.
Block | Point | Eulers (φ1,Φ,φ2) | SFmax |
---|---|---|---|
Block 4 | P1 | (330.2, 40.5, 86.5) | 0.4498 |
P12 | (327.2, 31.5, 80.6) | 0.4708 | |
P23 | (322.8, 44.4, 3.7) | 0.3974 | |
P35 | (326.6, 37.8, 83.7) | 0.4545 | |
P43 | (334.5, 39.8, 79) | 0.4658 | |
P58 | (328.9, 44.5, 89.1) | 0.4228 | |
P67 | (321.4, 40.1, 86) | 0.4303 | |
P79 | (327.4, 35.7, 84) | 0.4633 | |
P96 | (333.3, 43.3, 80.6) | 0.4507 | |
P107 | (339, 43.1, 79.3) | 0.4627 | |
Block 17 | P3 | (321.2, 42.1, 14.9) | 0.4428 |
P19 | (348.6, 37, 60.2) | 0.4613 | |
P31 | (342.7, 34.7, 71.5) | 0.4847 | |
P42 | (340.5, 38.4, 82.5) | 0.4759 | |
P58 | (340.3, 26.6, 61.4) | 0.4548 | |
P72 | (350.4, 32.5, 63.9) | 0.4814 | |
P89 | (5.3, 34.1, 44.2) | 0.4131 | |
P97 | (175.5, 42.9, 76.3) | 0.4844 | |
P105 | (155.7, 36.1, 85.6) | 0.4746 | |
P112 | (149.2, 40.4, 85.8) | 0.4491 |
Table 2 Euler angles and the corresponding maximum Schmid factors (SFmax) of some points.
Block | Point | Eulers (φ1,Φ,φ2) | SFmax |
---|---|---|---|
Block 4 | P1 | (330.2, 40.5, 86.5) | 0.4498 |
P12 | (327.2, 31.5, 80.6) | 0.4708 | |
P23 | (322.8, 44.4, 3.7) | 0.3974 | |
P35 | (326.6, 37.8, 83.7) | 0.4545 | |
P43 | (334.5, 39.8, 79) | 0.4658 | |
P58 | (328.9, 44.5, 89.1) | 0.4228 | |
P67 | (321.4, 40.1, 86) | 0.4303 | |
P79 | (327.4, 35.7, 84) | 0.4633 | |
P96 | (333.3, 43.3, 80.6) | 0.4507 | |
P107 | (339, 43.1, 79.3) | 0.4627 | |
Block 17 | P3 | (321.2, 42.1, 14.9) | 0.4428 |
P19 | (348.6, 37, 60.2) | 0.4613 | |
P31 | (342.7, 34.7, 71.5) | 0.4847 | |
P42 | (340.5, 38.4, 82.5) | 0.4759 | |
P58 | (340.3, 26.6, 61.4) | 0.4548 | |
P72 | (350.4, 32.5, 63.9) | 0.4814 | |
P89 | (5.3, 34.1, 44.2) | 0.4131 | |
P97 | (175.5, 42.9, 76.3) | 0.4844 | |
P105 | (155.7, 36.1, 85.6) | 0.4746 | |
P112 | (149.2, 40.4, 85.8) | 0.4491 |
|
[1] | Junlei Li, Ling Qin, Ke Yang, Zhijie Ma, Yongxuan Wang, Liangliang Cheng, Dewei Zhao. Materials evolution of bone plates for internal fixation of bone fractures: A review [J]. J. Mater. Sci. Technol., 2020, 36(0): 190-208. |
[2] | Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 173-182. |
[3] | Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding [J]. J. Mater. Sci. Technol., 2020, 46(0): 1-11. |
[4] | Wandong Xing, Zijie Wei, Rong Yu, Fanyan Meng. Prediction of stable high-pressure structures of tantalum nitride TaN2 [J]. J. Mater. Sci. Technol., 2019, 35(10): 2297-2304. |
[5] | Menglei Sun, Yu Jiang, Jiangfeng Ni, Liang Li. Application of materials based on group VB elements in sodium-ion batteries: A review [J]. J. Mater. Sci. Technol., 2018, 34(11): 1969-1976. |
[6] | Li L.L., Zhang Z.J., Zhang P., Tan J., Yang J.B., Zhang Z.F.. Deformation behaviors of Cu bicrystals with an inclined twin boundary at multiple scales [J]. J. Mater. Sci. Technol., 2017, 33(7): 698-702. |
[7] | Rui Shao-Shi, Shang Yi-Bo, Qiu Wenhui, Niu Li-Sha, Shi Hui-Ji, Matsumoto Shunsaku, Chuman Yasuharu. Fracture mode identification of low alloy steels and cast irons by electron back-scattered diffraction misorientation analysis [J]. J. Mater. Sci. Technol., 2017, 33(12): 1582-1595. |
[8] | Feng Yan, Hongwang Zhang. Evaluation of Stored Energy from Microstructure of Multi-component Nanostructured Cu [J]. J Mater Sci Technol, 2012, 28(4): 289-293. |
[9] | Luhan Hao, Mingyue Sun, Namin Xiao, Dianzhong Li. Characterizations of Dynamic Strain-induced Transformation in Low Carbon Steel [J]. J. Mater. Sci. Technol., 2012, 28(12): 1095-1101. |
[10] | Kai Zhu, Zhenguo Yang. Effect of Mg Addition on the Ferrite Grain Boundaries Misorientation in HAZ of Low Carbon Steels [J]. J Mater Sci Technol, 2011, 27(3): 252-256. |
[11] | Shengquan CAO, Youyuan LI, Jinxu ZHANG, Jiansheng WU. EBSD Investigation on Oriented Nucleation in IF Steels [J]. J Mater Sci Technol, 2007, 23(02): 262-266. |
[12] | Hanwei HE, Kechao ZHOU, Xiang XIONG. A Novel Method for Preparation of TaC Coating on C/C Composite Material [J]. J Mater Sci Technol, 2005, 21(03): 381-385. |
[13] | Yan CHENG, Wei CAI, Liancheng ZHAO. Surface Composition and Corrosion Property of TiNi Alloys Coated with Tantalum Films [J]. J Mater Sci Technol, 2004, 20(04): 474-476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||