J. Mater. Sci. Technol. ›› 2025, Vol. 231: 30-35.DOI: 10.1016/j.jmst.2024.12.068
• Research article • Previous Articles Next Articles
Guohai Chen1,*, Kazufumi Kobashi1, Don N. Futaba*
Received:2024-11-12
Revised:2024-12-20
Accepted:2024-12-23
Published:2025-10-01
Online:2025-02-26
Contact:
*E-mail addresses: guohai-chen@aist.go.jp (G. Chen), d-futaba@aist.go.jp (D.N. Futaba).
About author:1 These authors contributed equally to this work.
Guohai Chen, Kazufumi Kobashi, Don N. Futaba. Unexpected structural scaling and predictability in carbon nanotubes[J]. J. Mater. Sci. Technol., 2025, 231: 30-35.
| [1] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287 (2000) 637-640. [2] B. Peng, M. Locascio, P. Zapol, S.Y. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Nat. Nanotechnol. 3(2008) 626-631. [3] J.C. Charlier, X. Blase, S. Roche, Rev. Mod. Phys. 79(2007) 677-732. [4] E.A. Laird, F. Kuemmeth, G.A. Steele, K. Grove-Rasmussen, J. Nygård, K. Flensberg, L.P. Kouwenhoven, Rev. Mod. Phys. 87(2015) 703-764. [5] E. Pop, D. Mann, Q. Wang, K.E. Goodson, H.J. Dai, Nano Lett. 6(2006) 96-100. [6] K.K. Koziol, D. Janas, E. Brown, L. Hao, Physica E 88 (2017) 104-108. [7] D.-M. Tang, S.V. Erohin, D.G. Kvashnin, V.A. Demin, O. Cretu, S. Jiang, L. Zhang, P.-X. Hou, G.H. Chen, D.N. Futaba, Y. Zheng, R. Xiang, X. Zhou, F.-C. Hsia, N. Kawamoto, M. Mitome, Y. Nemoto, F. Uesugi, M. Takeguchi, S. Maruyama, H.-M. Cheng, Y. Bando, C. Liu, P.B. Sorokin, D. Golberg, Science 374 (2021) 1616-1620. [8] L. Xiang, Y.R. Wang, F. Xia, F. Liu, D.L. He, G.H. Long, X.W. Zeng, X.L. Liang, C.H. Jin, Y.W. Wang, A.L. Pan, L.M. Peng, Y.F. Hu, Sci. Adv. 8 (2022) eabp8075. [9] S.H. Kim, C.S. Haines, N. Li, K.J. Kim, T.J. Mun, C. Choi, J.T. Di, Y.J. Oh, J.P. Oviedo, J. Bykova, S.L. Fang, N. Jiang, Z.F. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M.S. Lucas, L.F. Drummy, B. Maruyama, D.Y. Lee, X. Lepro, E.L. Gao, D. Albarq, R. Ovalle-Robles, S.J. Kim, R.H. Baughman, Science 357 (2017) 773-778. [10] Y.L. Wang, Y.R. Zhao, M. Ren, Y.R. Zhou, L.Z. Dong, X.L. Wei, J.F. He, B. Cui, X.N. Wang, P.P. Xu, J.T. Di, Q.W. Li, Nano Energy 102 (2022) 107609. [11] X.Q. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J.W. Li, B.W. Byles, E. Pomerantseva, G.X. Wang, Y. Gogotsi, Nano Energy 26 (2016) 513-523. [12] G.H. Chen, R. Sundaram, A. Sekiguchi, K. Hata, D.N. Futaba, A.C.S.Appl. Nano Mater. 4(2021) 869-876. [13] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, Nat. Nanotechnol. 6(2011) 296-301. [14] C.W. Fan, X.H. Cheng, Y.N. Xie, F.F. Liu, X.S. Deng, M.G. Zhu, Y.F. Gao, M.M. Xiao, Z.Y. Zhang, ACS Nano 17 (2023) 10987-10995. [15] V. Mani, B. Devadas, S.M. Chen, Biosens. Bioelectron. 41(2013) 309-315. [16] J.S. Yan, M. Orecchioni, F. Vitale, J.A. Coco, G. Duret, S. Antonucci, S.S. Pamulapati, L.W. Taylor, O.S. Dewey, M. Di Sante, A.M. Segura, C. Gurcan, F. Di Lisa, A. Yilmazer, M.D. McCauley, J.T. Robinson, M. Razavi, K. Ley, L.G. Delogu, M. Pasquali, Carbon 173 (2021) 462-476. [17] K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306 (2004) 1362-1364. [18] Y. Murakami, S. Chiashi, Y. Miyauchi, M.H. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385(2004) 298-303. [19] Q.F. Liu, W.C. Ren, Z.G. Chen, D.W. Wang, B.L. Liu, B. Yu, F. Li, H.T. Cong, H.M. Cheng, ACS Nano 2 (2008) 1722-1728. [20] D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, S. Noda, Carbon 50 (2012) 1538-1545. [21] K.E. Moore, M. Pfohl, F. Hennrich, V.S.K. Chakradhanula, C. Kuebel, M.M. Kappes, J.G. Shapter, R. Krupke, B.S. Flavel, ACS Nano 8 (2014) 6756-6764. [22] A.A. Green, M.C. Hersam, Adv. Mater. 23(2011) 2185-2190. [23] Y.L. Li, I.A. Kinloch, A.H. Windle, Science 304 (2004) 276-278. [24] Y.P. Liao, H. Jiang, N. Wei, P. Laiho, Q. Zhang, S.A. Khan, E.I. Kauppinen, J. Am. Chem.Soc. 140(2018) 9797-9800. [25] D.N. Futaba, J. Goto, T. Yamada, S. Yasuda, M. Yumura, K. Hata, Carbon 48 (2010) 4542-4546. [26] M.S. Dresselhaus, G. Dresselhaus, A. Jorio, J. Phys. Chem. C 111 (2007) 17887-17893. [27] H. Huang, C.H. Liu, Y. Wu, S.S. Fan, Adv. Mater. 17(2005) 1652-1656. [28] Y. Awano, S. Sato, D. Kondo, M. Ohfuti, A. Kawabata, M. Nihei, N. Yokoyama, Phys. Status Solidi A 203 (2006) 3611-3616. [29] T.H. Nam, K. Goto, Y. Yamaguchi, E.V.A.Premalal, Y. Shimamura, Y.Inoue, K. Naito, S. Ogihara, Compos. Pt. A-Appl. Sci. Manuf. 76(2015) 289-298. [30] X.L. Li, J.F. Wang, Appl. Math. Mech.-Engl.Ed. 43(2022) 1857-1872. [31] T. Tian, Y. Cheng, Z.F. Sun, K. Huang, M. Lei, H.L. Tang, Adv. Compos. Hybrid Mater. 6(2023) 7. [32] Y. Magnin, F. Rondepierre, W. Cui, D.J. Dunstan, A. San-Miguel, Carbon 178 (2021) 552-562. [33] J.X. Qin, J.B. Cao, J. Huang, Y.Z. Sun, J.F. Zhang, M. Huang, Diam. Relat. Mater. 144(2024) 110975. [34] L.L. Xu, Y.F. Cao, X.X. Yuan, C. Liang, Z.Z. Yong, M.H. Chen, Nano 17 (2022) 2250074. [35] M. Elaskalany, K. Behdinan, Mater. Res. Express 10 (2023) 105010. [36] B. Ayadi, R. Rehman, B. Ullah, H.A. Wahab, U. Khan, T. Muhammad, L. Kolsi, N. Ghazouani, Case Stud, Therm. Eng. 58(2024) 104354. [37] C.L. Park, B. Goh, E.S. Kim, J. Choi, S.H. Kim, Carbon 220 (2024) 118775. [38] X. Kang, X. Meng, Chem. Phys. 565(2023) 111733. [39] S. Krishnan, V. Yadav, I. Devotta, U. Srivastava, S.S. Ramakumar, Diam. Relat. Mater. 141(2024) 110651. [40] Z. Li, J.Y. Ouyang, J.F. Ding, ACS Appl. Electron. Mater. 4(2022) 6335-6344. [41] S.A. Malumyan, N.G. Muradyan, M.A. Kalantaryan, A.A. Arzumanyan, Y. Melikyan, D. Laroze, M.G. Barseghyan, Nanomaterials 14 (2024) 1271. [42] K. Kobashi, S. Ata, T. Yamada, D.N. Futaba, T. Okazaki, K. Hata, ACS Appl. Nano Mater. 2(2019) 4043-4047. [43] T. Tsuji, G.H. Chen, T. Morimoto, Y. Shimizu, J. Kim, H. Sakakita, K. Hata, S. Sakurai, K. Kobashi, D.N. Futaba, Nanomaterials 11 (2021) 3461. [44] G.H. Chen, R.C. Davis, D.N. Futaba, S. Sakurai, K. Kobashi, M. Yumura, K. Hata, Nanoscale 8 (2016) 162-171. [45] D.N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, S. Iijima, J. Phys. Chem. B 110 (2006) 8035-8038. [46] T. Yamada, T. Namai, K. Hata, D.N. Futaba, K. Mizuno, J. Fan, M. Yudasaka, M. Yumura, S. Iijima, Nat. Nanotechnol. 1(2006) 131-136. [47] F. Schaffel, M.H. Rummeli, C. Kramberger, U. Queitsch, E. Mohn, R. Kaltofen, T. Pichler, B. Buechner, B. Rellinghaus, L. Schultz, Phys. Status Solidi A-Appl. Mater. 205(2008) 1382-1385. [48] B. Zhao, D.N. Futaba, S. Yasuda, M. Akoshima, T. Yamada, K. Hata, ACS Nano 3 (2009) 108-114. [49] R.S. Xie, G.F. Zhong, C. Zhang, B.A. Chen, C.S. Esconjauregui, J. Robertson, J. Appl. Phys. 114(2013) 244302. [50] G.H. Chen, D.N. Futaba, S. Sakurai, M. Yumura, K. Hata, Carbon 67 (2014) 318-325. [51] G.H. Chen, S. Sakurai, M. Yumura, K. Hata, D.N. Futaba, Carbon 107 (2016) 433-439. [52] N. Chiodarelli, O. Richard, H. Bender, M. Heyns, S. De Gendt, G. Groeseneken, P.M. Vereecken, Carbon 50 (2012) 1748-1752. [53] T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D.N. Futaba, M. Yumura, S. Iijima, K. Hata, Nano Lett. 8(2008) 4288-4292. [54] P.B. Amama, C.L. Pint, L. McJilton, S.M. Kim, E.A. Stach, P.T. Murray, R.H. Hauge, B. Maruyama, Nano Lett. 9(2009) 44-49. [55] G.H. Chen, D.-M. Tang, Nanomaterials 14 (2024) 1688. [56] A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Carbon 39 (2001) 507-514. [57] B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Science 303 (2004) 62-65. [58] W.X. Zhang, Z.Z. Zhang, Y.G. Zhang, Nanoscale Res. Lett. 6(2011) 555. [59] M. Maurya, P.K. Sappidi, J.K. Singh, Energy Fuels 34 (2020) 7223-7231. [60] F. Ding, A. Rosén, K. Bolton, J. Chem. Phys. 121(2004) 2775-2779. [61] C.G. Lu, J. Liu, J. Phys. Chem. B 110 (2006) 20254-20257. [62] A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres, Appl. Phys. A 81 (2005) 223-240. [63] R.F. Wood, S. Pannala, J.C. Wells, A.A. Puretzky, D.B. Geohegan, Phys. Rev. B 75 (2007) 235446. [64] M. Bedewy, E.R. Meshot, M.J. Reinker, A.J. Hart, ACS Nano 5 (2011) 8974- 8989. [65] P. Nikolaev, D. Hooper, N. Perea-Lopez, M. Terrones, B. Maruyama, ACS Nano 8 (2014) 10214-10222. [66] S.S. Lee, C.G. Zhang, Z.A. Lewicka, M.J. Cho, J.T. Mayo, W.W. Yu, R.H. Hauge, V.L. Colvin, J. Phys. Chem. C 116 (2012) 10287-10295. [67] F. Kokai, I. Nozaki, A. Koshio, Diam. Relat. Mater. 24(2012) 25-28. [68] Y. Pan, Y.F. Liu, W.D. Chi, Z.M. Shen, Mater. Lett. 65(2011) 3362-3364. [69] L.J.Lemus-Yegres, M.Pérez-Cadenas, M.C. Román-Martínez, C.S.M. de Lecea, Micropor. Mesopor. Mater. 139(2011) 164-172. |
| [1] | Xinyi Wan, Leilei Zhang, Tiantian Wang, Nan Zhang, Hejun Li. Synergistic optimization of multifunctional properties in carbon fiber/phenolic composites by designing array carbon nanotubes structures on the surface of carbon fibers [J]. J. Mater. Sci. Technol., 2025, 215(0): 233-243. |
| [2] | Chang Liu, Na Wu, Bin Li, Zhou Wang, Lili Wu, Zhihui Zeng, Jiurong Liu. Facile manufacturing of carbon nanotube/ZIF-67-derived cobalt composite aerogel with high-efficiency electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2025, 220(0): 129-139. |
| [3] | Hai-Bo Zhao, Dai-Ming Tang, Lili Zhang, Meng-Ke Zou, Rui-Hong Xie, Chang Liu, Hui-Ming Cheng. Diameter-dependent thermal conductivity of carbon nanotubes [J]. J. Mater. Sci. Technol., 2025, 221(0): 46-53. |
| [4] | Qihao Wu, Heju Gao, Jiahui Jiang, Ting Zhao, Shuai Liu, Chunyan Wu, Guancheng Xu, Li Zhang. In-situ nitrogen-doped carbon nanotube-encapsulated Co9S8 nanoparticles as self-supporting bifunctional air electrodes for zinc-air batteries [J]. J. Mater. Sci. Technol., 2025, 222(0): 1-10. |
| [5] | Caixiang Xiao, Fei Zhao, Xu Yang, Yuanxiao Zhao, Qiang Song, Qingliang Shen. Nanoscale insights in core-shell structure formation and property regulation of isotropic pyrolytic carbon materials [J]. J. Mater. Sci. Technol., 2025, 222(0): 263-272. |
| [6] | Chengjuan Wang, Yanxiang Wang, Haotian Jiang, Yanqiu Feng, Deli Yang, Chengguo Wang. A facile strategy for customizing multifunctional magnetic-dielectric carbon microflower superstructures deposited with carbon nanotubes [J]. J. Mater. Sci. Technol., 2025, 223(0): 34-46. |
| [7] | Fangqian Han, Hao An, Qianru Wu, Jifu Bi, Feng Ding, Maoshuai He. Exploiting supported vanadium catalyst for single-walled carbon nanotube synthesis [J]. J. Mater. Sci. Technol., 2025, 225(0): 240-246. |
| [8] | Jiye Xiao, Zhen Zhang, Zhixiong Liao, Jinzhen Huang, Dongxia Xian, Runhao Zhu, Shichao Wang, Chunmei Gao, Lei Wang. Thermoelectric generator and temperature sensor based on polyamide doped n-type single-walled nanotubes toward self-powered wearable electronics [J]. J. Mater. Sci. Technol., 2025, 207(0): 246-254. |
| [9] | Rui Zhang, Jinxue Li, Yu Yin, Yonghao Chen, Qifeng Huang, Ping Tang, Hai Wang, Yuezhen Bin. Sodium alginate/carbon nanotube energy harvesting fibers: Axial functional group gradient and moist-electric performance [J]. J. Mater. Sci. Technol., 2025, 208(0): 67-77. |
| [10] | Juan He, Chao Chen, Hailong Yu, Yang Zhao, Ming Xu, Ting Xiong, Qiuhong Lu, Zhi Yu, Kaiping Tai, Jun Tan, Chang Liu. Epitaxial growth of highly atomically ordered Pt-Fe nanoparticles from carbon nanotube bundles as durable oxygen reduction electrocatalysts [J]. J. Mater. Sci. Technol., 2025, 212(0): 139-147. |
| [11] | Jiali Yan, Yu Sun, Tao Jia, Bin Tao, Min Hong, Pingan Song, Miaojun Xu. Vertically aligned cellulose nanofiber/carbon nanotube aerogel-infused epoxy nanocomposites for highly efficient solar-thermal-electric conversion [J]. J. Mater. Sci. Technol., 2025, 214(0): 313-321. |
| [12] | Yu Zhang, Boyuan Chen, Yanxin Qiao, Yurong Duan, Xinyu Qi, Siqi He, Hu Zhou, Junkang Chen, Aihua Yuan, Shunli Zheng. FeNi alloys incorporated N-doped carbon nanotubes as efficient bifunctional electrocatalyst with phase-dependent activity for oxygen and hydrogen evolution reactions [J]. J. Mater. Sci. Technol., 2024, 201(0): 157-165. |
| [13] | Que Huang, Silong Wang, Jichun He, Dengji Xu, Safaa N. Abdou, Mohamed M. Ibrahim, Shiqi Sun, Yanjun Chen, Handong Li, Ben Bin Xu, Changcheng Liu, Zeinhom M. El-Bahy, Zhanhu Guo. Experimental design of paraffin/methylated melamine-formaldehyde microencapsulated composite phase change material and the application in battery thermal management system [J]. J. Mater. Sci. Technol., 2024, 169(0): 124-136. |
| [14] | Lei Yang, Tingkai Zhao, Abdul Jalil, Huijun Luo, Tao Jiang, Yuan Shu, Yazhou Yin, Weiyu Jia. Modulating oxygen vacancy concentration for selective growth of semiconducting single-walled carbon nanotubes with narrow diameters [J]. J. Mater. Sci. Technol., 2024, 174(0): 44-54. |
| [15] | Bihan Zhang, Leilei Zhang, Zhongkai Wang, Qian Gao. An innovative wood derived carbon-carbon nanotubes-pyrolytic carbon composites with excellent electrical conductivity and thermal stability [J]. J. Mater. Sci. Technol., 2024, 175(0): 22-28. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
