J. Mater. Sci. Technol. ›› 2025, Vol. 224: 142-158.DOI: 10.1016/j.jmst.2024.11.006
• Research Article • Previous Articles Next Articles
Z.H. Caoa,b, Y. Ngiama, C.P. Huanga,b, L.H. Hec,d, M.X. Huanga,b,*
Received:
2024-08-01
Revised:
2024-11-20
Accepted:
2024-11-23
Published:
2025-07-20
Online:
2024-11-29
Contact:
*E-mail address: mxhuang@hku.hk (M.X. Huang)
Z.H. Cao, Y. Ngiam, C.P. Huang, L.H. He, M.X. Huang. On the hydrogen embrittlement mechanism of 2 GPa-grade press-hardened steel at various strain rates: Experiments and modeling[J]. J. Mater. Sci. Technol., 2025, 224: 142-158.
[1] O. Bouaziz, H. Zurob, M. Huang, Steel Res. Int. 84 (2013) 937-947. [2] A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, U. Vaidya, Ann. Rev. Mater. Res. 49 (2019) 327-359. [3] Q. Lu, Q. Lai, Z. Chai, X. Wei, X. Xiong, H. Yi, M. Huang, W. Xu, J. Wang, Sci. Adv. 7 (2021) 1-9. [4] M. Ma, H. Yi, in: Adv. Steels, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 187-198. [5] L. Liu, B. He, M. Huang, Adv. Eng. Mater. 20 (2018) 1-17. [6] E. Billur, Springer, 2007. [7] T. Taylor, A. Clough, Mater. Sci. Technol. 34 (2018) 809-861. [8] E. Billur, 2022. https://ahssinsights.org/forming/press-hardened-steels/phs-automotive-applications-and-usage/. [9] S. Golling, D. Frómeta, D. Casellas, P. Jonsén, Mater. Sci. Eng. A 743 (2019) 529-539. [10] J.N. Hall, J.R.Fekete, in: Automot. Steels Des. Metall. Process. Appl, Elsevier Ltd, Amsterdam, 2017, pp. 19-45. [11] H. Karbasian, A.E. Tekkaya, J. Mater. Process.Technol. 210 (2010) 2103-2118. [12] E. Billur, in: Automot. Steels Des. Metall. Process. Appl, Elsevier Ltd, Amster-dam, 2016, pp. 387-411. [13] J. Zhou, B.Y. Wang, M.D. Huang, D. Cui, Int. J. Miner. Metall. Mater. 21 (2014) 544-555. [14] Z.Y. Chang, Y.J. Li, D. Wu, Mater. Sci. Eng. A 784 (2020) 139342. [15] G. Krauss, Mater. Sci. Eng.A 273-275 (1999) 40-57. [16] R. Valentini, M.M. Tedesco, S. Corsinovi, L. Bacchi, M. Villa, Metals 9 (2019) 934. [17] Y.T. Lin, H.L. Yi, Z.Y. Chang, H.C. Lin, H.W. Yen, Front. Mater. 7 (2021) 1-12. [18] E. Pouillier, A.-F.F. Gourgues, D.Tanguy, E.P. Busso, Int. J. Plast. 34 (2012) 139-153. [19] D. An, W. Krieger, S. Zaefferer, Int. J. Plast. 126 (2020) 102625. [20] Y. Ogawa, K. Noguchi, O. Takakuwa, Acta Mater. 229 (2022) 117789. [21] Y. Li, W. Li, N. Min, H. Liu, X. Jin, Int. J. Plast. 133 (2020) 102805. [22] G. Hachet, A. Metsue, A. Oudriss, X. Feaugas, Int. J. Plast. 129 (2020) 102667. [23] M.B. Djukic, G.M. Bakic, V. Sijacki Zeravcic, A. Sedmak, B. Rajicic, Eng. Fract. Mech. 216 (2019) 106528. [24] M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis, Acta Mater. 165 (2019) 734-750. [25] A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Mater. 60 (2012) 5182-5189. [26] M. Nagumo, K. Takai, Acta Mater. 165 (2019) 722-733. [27] F.D. Fischer, J. Svoboda, Int. J. Plast. 63 (2014) 110-123. [28] R. Kirchheim, Scr. Mater. 62 (2010) 67-70. [29] S. Liang, M. Huang, L. Zhao, Y. Zhu, Z. Li, Int. J. Plast. 143 (2021) 103023. [30] B. Sun, W. Krieger, M. Rohwerder, D. Ponge, D. Raabe, Acta Mater. 183 (2020) 313-328. [31] A. Shibata, T. Yonemura, Y. Momotani, M. heom Park, S.Takagi, Y. Madi, J. Besson, N. Tsuji, Acta Mater. 210 (2021) 116828. [32] Z. Cao, Z. Wang, Y. Ngiam, Z. Luo, Z. Geng, J. Wang, Y. Zhang, M. Huang, Steel Res. Int. 94 (2023) 2200685. [33] Y.S. Chen, D. Haley, S.S.A. Gerstl, A.J. London, F. Sweeney, R.A. Wepf, W.M. Rainforth, P.A.J.J. Bagot, M.P. Moody, Science 355 (2017) 1196-1199. [34] Y.S. Chen, H. Lu, J. Liang, A. Rosenthal, H. Liu, G. Sneddon, I. McCarroll, Z. Zhao, W. Li, A. Guo, J.M. Cairney, Science 367 (2020) 171-175. [35] L. Wan, W.T. Geng, A. Ishii, J.P. Du, Q. Mei, N. Ishikawa, H. Kimizuka, S. Ogata, Int. J. Plast. 112 (2019) 206-219. [36] Z. Zheng, J. Chen, Y. Zhu, L. Zhao, M. Huang, S. Liang, Z. Li, Int. J. Plast. 138 (2021) 102937. [37] M. Isfandbod, E. Martínez-Pañeda, Int. J. Plast. 144 (2021) 103044. [38] S. Yuan, Y. Zhu, L. Zhao, S. Liang, M. Huang, Z. Li, Int. J. Plast. 158 (2022) 103409. [39] H. Abdolvand, Int. J. Plast. 116 (2019) 39-61. [40] C.V.Di Leo, L.Anand, Int. J. Plast. 43 (2013) 42-69. [41] L. Lin, B. Li, G. Zhu, Y. Kang, R. Liu, Mater. Sci. Eng. A 721 (2018) 38-46. [42] L. Cho, P.E. Bradley, D.S. Lauria, M.J. Connolly, E.J. Seo, K.O. Findley, J.G. Speer, L. Golem, A.J. Slifka, Int. J. Hydrogen Energy 46 (2021) 24425-24439. [43] J. Yoo, M.C. Jo, M.C. Jo, S. Kim, S.-H. Kim, J.Oh, S.S. Sohn, S. Lee, Acta Mater. 207 (2021) 116661. [44] S. Zhang, Y. Huang, B. Sun, Q. Liao, H. Lu, B. Jian, H. Mohrbacher, W. Zhang, A. Guo, Y. Zhang, Mater. Sci. Eng. A 626 (2015) 136-143. [45] M. Henthorne, Corrosion 72 (2016) 1488-1518. [46] A. Kuduzović, M.C. Poletti, C. Sommitsch, M. Domankova, S. Mitsche, R. Kien-reich, Mater. Sci. Eng. A 590 (2014) 66-73. [47] W. Hui, Y. Zhang, X. Zhao, C. Shao, K. Wang, W. Sun, T. Yu, Mater. Sci. Eng. A 662 (2016) 528-536. [48] H. Zhao, P. Wang, J. Li, Int. J. Hydrogen Energy 46 (2021) 34983-34997. [49] Z.H. Cao, B.N. Zhang, M.X. Huang, J. Mater. Sci.Technol. 124 (2022) 109-115. [50] Y. Ngiam, Z.H. Cao, M.X. Huang, Mater. Sci. Eng. A 834 (2022) 142523. [51] R.A. Oriani, Acta Metall. 18 (1970) 147-157. [52] R.A. Oriani, Berichte Der Bunsengesellschaft Für Phys. Chemie 76 (1972) 10. [53] A. McNabb, P.K. Foster, Trans. Metall. Soc. AIME 227 (1963) 618. [54] P. Sofronis, R.M. McMeeking, J. Mech. Phys. Solids 37 (1989) 317-350. [55] COMSOL Multiphysics, Structural Mechanics Module User’s Guide, Ver-sion 5.6, 2020. https://doc.comsol.com/5.6/doc/com.comsol.help.sme/StructuralMechanicsModuleUsersGuide.pdf. [56] O. Shchyglo, G. Du, J.K. Engels, I. Steinbach, Acta Mater. 175 (2019) 415-425. [57] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51 (2003) 1789-1799. [58] Y. Momotani, A. Shibata, T. Yonemura, Y. Bai, N. Tsuji, Scr. Mater. 178 (2020) 318-323. [59] S. Zhang, S. Liu, J. Wan, W. Liu, Mater. Sci. Eng. A 772 (2020) 138788. [60] P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 58 (2010) 206-226. [61] A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, P.E.J.Rivera-Díaz-del-Castillo, E.I. Galindo-Nava, Acta Mater. 194 (2020) 118-133. [62] H.J. Seo, Y.U. Heo, J.N. Kim, J. Lee, S. Choi, C.S. Lee, Corros. Sci. 176 (2020) 108929. [63] J. Venezuela, T. Hill, Q. Zhou, H. Li, Z. Shi, F. Dong, R. Knibbe, M. Zhang, M.S. Dargusch, A. Atrens, Corros. Sci. 188 (2021) 109550. [64] M. Lin, H. Yu, Y. Ding, G. Wang, V. Olden, A. Alvaro, J. He, Z. Zhang, Scr. Mater. 215 (2022) 114707. [65] S. Serebrinsky, E.A. Carter, M. Ortiz, J. Mech. Phys. Solids 52 (2004) 2403-2430. [66] E. Martínez-Pañeda, A. Golahmar, C.F. Niordson, Comput. Methods Appl. Mech. Eng. 342 (2018) 742-761. [67] M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, I.M. Robertson, J. Mech. Phys. Solids 78 (2014) 511-525. [68] J. Song, W.A. Curtin, Acta Mater. 68 (2014) 61-69. [69] T. Depover, K. Verbeken, Corros. Sci. 112 (2016) 308-326. [70] P. Gong, A. Turk, J. Nutter, F. Yu, B. Wynne, P. Rivera-Diaz-del-Castillo, W.Mark Rainforth, Acta Mater. 223 (2022) 117488. [71] T. Chiba, T. Chida, T. Omura, D. Hirakami, K. Takai, Scr. Mater. 223 (2023) 115072. [72] S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre, H. Marchebois, Mater. Sci. Eng. A 534 (2012) 384-393. [73] W.Y. Choo, J.Y. Lee, Metall. Trans. A 13A (1982) 135-140. [74] A. Turk, D. San Martín, P.E.J.Rivera-Díaz-del-Castillo, E.I. Galindo-Nava, Scr. Mater. 152 (2018) 112-116. [75] M. Nagumo, M. Nakamura, K. Takai, Metall. Mater. Trans. A-Phys.Metall. Mater. Sci. 32 (2001) 339-347. [76] Y. Momotani, A. Shibata, D. Terada, N. Tsuji, Int. J. Hydrogen Energy 42 (2017) 3371-3379. [77] C. Ayas, V.S. Deshpande, N.A. Fleck, J. Mech. Phys. Solids 63 (2014) 80-93. [78] T. Depover, A. Elmahdy, F. Vercruysse, P. Verleysen, K. Verbeken, EPJ Web Conf. 183 (2018) 1-6. [79] A. Pundt, R. Kirchheim, Annu. Rev. Mater. Res. 36 (2006) 555-608. [80] Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang, Acta Metall. Sin. Engl. Lett. 36 (2022) 1123-1143. [81] H.K. Birnbaum, P. Sofronis, Mater. Sci. Eng. A 176 (1994) 191-202. [82] H. Liu, X.K. Shang, B.B. He, Z.Y. Liang, Int. J. Plast. 161 (2022) 103495. [83] K.R. Jo, E.J. Seo, D. Hand Sulistiyo, J.K. Kim, S.W. Kim, B.C. De Cooman, Mater. Sci. Eng. A 704 (2017) 252-261. [84] T.M. Hatem, M.A. Zikry, Mater. Sci. Technol. 27 (2011) 1570-1573. [85] B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357 (2017) 1029-1032. [86] J.K. Tien, R.J. Richards, O. Buck, H.L. Marcus, Scr. Metall. 9 (1975) 1097-1101. [87] J. Tien, A.W. Thompson, I.M. Bernstein, R.J. Richards, Metall. Trans. A 7 (1976) 821-829. [88] L. Cupertino-Malheiros, A. Oudriss, F. Thébault, M. Piette, X. Feaugas, Metall. Mater. Trans. A-Phys.Metall. Mater. Sci. 54 (2023) 1159-1173. [89] D. Di Stefano, R. Nazarov, T. Hickel, J. Neugebauer, M. Mrovec, C. Elsässer, Phys. Rev. B 93 (2016) 1-14. [90] M. Ueda, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 49 (2001) 3421-3432. [91] M. Ueda, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 51 (2003) 1007-1017. [92] H. Yu, A. Diaz, X. Lu, B. Sun, Y. Ding, M. Koyama, J. He, X. Zhou, A. Oudriss, X. Feaugas, Z. Zhang, Chem. Rev. 124 (2024) 6271-6392. [93] L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, R.O. Ritchie, Science 368 (2020) 1347-1352. [94] N. Li, W. Wang, Q. Liang, Mater. Res. Express 7 (2020) 046520. [95] A. Atrens, Q. Liu, C. Tapia-Bastidas, E. Gray, B. Irwanto, J. Venezuela, Q. Liu, Corros. Mater. Degrad. 1 (2018) 3-26. [96] J. Venezuela, Q. Zhou, Q. Liu, H. Li, M. Zhang, M.S. Dargusch, A. Atrens, Mater. Today Commun. 17 (2018) 1-14. [97] S.S. Shishvan, G. Csanyi, V.S. Deshpande, Acta Mater. 257 (2023) 119173. [98] Ribárik G., Modeling of Diffraction Patterns Based on Microstructural Properties, Ph.D. Thesis, Eötvös Loránd University, 2008. [99] D. Akama, T. Tsuchiyama, S. Takaki, ISIJ Int. 56 (2016) 1675-1680. [100] M. Wang, M.X. Huang, Acta Mater. 188 (2020) 551-559. [101] T. Ungár, S. Harjo, T. Kawasaki, Y. Tomota, G. Ribárik, Z. Shi, Metall. Mater. Trans. A Phys.Metall. Mater. Sci. 48 (2017) 159-167. [102] S. Harjo, T. Kawasaki, Y. Tomota, W. Gong, K. Aizawa, G. Tichy, Z. Shi, T. Ungár, Metall. Mater. Trans. A Phys.Metall. Mater. Sci. 48 (2017) 4080-4092. [103] M. Shamsujjoha, Mater. Sci. Eng. A 776 (2020) 139039. [104] G.I. Taylor, Proc. R. Soc. London. Ser. A 145 (1934) 362-387. [105] T. Swarr, G. Krauss, Metall. Trans. A 7 (1976) 41-48. |
[1] | Hyun Wook Lee, Tak Min Park, Hye-Jin Kim, Jeongho Han. Correlation between pre-strain and hydrogen embrittlement behavior in medium-Mn steel [J]. J. Mater. Sci. Technol., 2025, 206(0): 62-73. |
[2] | Sang Yoon Song, Dae Cheol Yang, Han-Jin Kim, Sang-In Lee, Hyeon-Seok Do, Byeong-Joo Lee, Alireza Zargaran, Seok Su Sohn. Unveiling the roles of initial phase constituents and phase metastability in hydrogen embrittlement of TRIP‐assisted VCrCoFeNi medium‐entropy alloys [J]. J. Mater. Sci. Technol., 2025, 207(0): 160-176. |
[3] | Zhao Xu, Saiyu Liu, Yujie Zhu, Rongjian Shi, Kewei Gao, Xiaolu Pang. In situ investigation of hydrogen embrittlement induced by δ phase in selective laser-melted GH4169 superalloy [J]. J. Mater. Sci. Technol., 2025, 211(0): 145-158. |
[4] | Binglu Zhang, Zhaoxiang Ma, Yuan Ma, Yongqing Chen, Baolong Jiang, Yu Jia, Rongjian Shi, Lin Chen, Yang He, Lijie Qiao. In-situ scanning Kelvin probe force microscopy on the diverse hydrogen trapping behaviours around incoherent NbC nanoprecipitates [J]. J. Mater. Sci. Technol., 2024, 194(0): 216-224. |
[5] | Yan Zhang, Qizhe Ye, Yu Yan. Processing, microstructure, mechanical properties, and hydrogen embrittlement of medium-Mn steels: A review [J]. J. Mater. Sci. Technol., 2024, 201(0): 44-57. |
[6] | Yu Ding, Haiyang Yu, Meichao Lin, Michael Ortiz, Senbo Xiao, Jianying He, Zhiliang Zhang. Hydrogen trapping and diffusion in polycrystalline nickel: The spectrum of grain boundary segregation [J]. J. Mater. Sci. Technol., 2024, 173(0): 225-236. |
[7] | Yong Li, Tao Hu, Qian Li, Yang Wu, Ling Wang, Yang You, Biyun Wang. Evaluation of the stress corrosion crack growth behaviour of high-strength marine steel based on model of crack tip mechano-electrochemical effect [J]. J. Mater. Sci. Technol., 2024, 190(0): 93-105. |
[8] | Shenglan Yang, Jing Zhong, Jiong Wang, Jianbao Gao, Qian Li, Lijun Zhang. A novel computational model for isotropic interfacial energies in multicomponent alloys and its coupling with phase-field model with finite interface dissipation [J]. J. Mater. Sci. Technol., 2023, 133(0): 111-122. |
[9] | Jinliang Zhang, Jianbao Gao, Shenglan Yang, Bo Song, Lijun Zhang, Jian Lu, Yusheng Shi. Breaking the strength-ductility trade-off in additively manufactured aluminum alloys through grain structure control by duplex nucleation [J]. J. Mater. Sci. Technol., 2023, 152(0): 201-211. |
[10] | Hongxu Cheng, Hong Luo, Zhimin Pan, Xuefei Wang, Qiancheng Zhao, Yu Fu, Xiaogang Li. Effects of laser powder bed fusion process parameters on microstructure and hydrogen embrittlement of high-entropy alloy [J]. J. Mater. Sci. Technol., 2023, 155(0): 211-226. |
[11] | Kerong Ren, Hongyang Liu, Rong Ma, Sen Chen, Siyuan Zhang, Ruixin Wang, Rong Chen, Yu Tang, Shun Li, Fangyun Lu. Dynamic compression behavior of TiZrNbV refractory high-entropy alloys upon ultrahigh strain rate loading [J]. J. Mater. Sci. Technol., 2023, 161(0): 201-219. |
[12] | Huxiang Xia, Yanhong Yang, Qiushui Feng, Qingyan Xu, Hongbiao Dong, Baicheng Liu. Generation mechanism and motion behavior of sliver defect in single crystal Ni-based superalloy [J]. J. Mater. Sci. Technol., 2023, 137(0): 232-246. |
[13] | Zhisong Chai, Qi Lu, Jun Hu, Lingyu Wang, Zhou Wang, Jianfeng Wang, Wei Xu. Effect of retained austenite on the fracture behavior of a novel press-hardened steel [J]. J. Mater. Sci. Technol., 2023, 135(0): 34-45. |
[14] | Wensen Huang, Jihua Chen, Hongge Yan, Weijun Xia, Bin Su. High plasticity mechanism of high strain rate rolled Mg-Ga alloy sheets [J]. J. Mater. Sci. Technol., 2022, 101(0): 187-198. |
[15] | Jia Chen, Min Guo, Min Yang, Lin Liu, Jun Zhang. Double minimum creep processing and mechanism for γʹ strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 123-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||