J. Mater. Sci. Technol. ›› 2025, Vol. 219: 33-43.DOI: 10.1016/j.jmst.2024.09.007

• Research article • Previous Articles     Next Articles

Enhancing oxidation resistance via grain boundary engineering in L12-strengthened medium entropy alloys

Shaoxin Caia,b, Jingping Cuia, Zhihong Dongc, Weiyan Lva, Baijun Yanga, Dong Hana,*, Jianqiang Wanga,*   

  1. aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
    bSchool of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
    cShi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2024-07-02 Revised:2024-08-24 Accepted:2024-09-05 Published:2024-09-22 Online:2025-06-05
  • Contact: *E-mail addresses:dhan@imr.ac.cn (D. Han),jqwang@imr.ac.cn (J. Wang)

Abstract: The concept of grain boundary engineering (GBE) has been successfully applied to L12-strengthened (CoCrNi)94Al3Ti3 medium entropy alloy, with the aim of improving the oxidation resistance by increasing the ratio of special boundaries and suppressing discontinuous precipitation. Surprisingly, our results reveal that GBE treatment not only slows down the oxidation kinetics and but also alters the oxide scale from TiO2 and multi-defect Cr2O3 to continuous and protective Cr2O3 and Al2O3, thereby contributing to an enhanced oxidation and anti-spalling resistance. The GBE treatment reduces the oxidation weight gain of the current alloy from 1.950 mg cm-2 to 1.211 mg cm-2 after 100 h of cyclic oxidation at 800 °C. The findings show that the extensive outward diffusion of Ti accelerates ion transport and promotes microporosity, thus leading to more defects being formed in the oxide film. The GBE treatment suppresses the discontinuous precipitation of the Ti-bearing L12 phase and breaks the random large angular grain boundaries network, inhibiting the diffusion of Ti and ultimately enhancing the oxidation properties of the alloy. The current work provides an idea of oxidation resistance enhancement for Ti-bearing L12-strengthened alloys without changing the alloy composition.

Key words: Medium entropy alloy, Discontinuous precipitation, Oxidation, Grain boundary engineering