J. Mater. Sci. Technol. ›› 2025, Vol. 212: 303-311.DOI: 10.1016/j.jmst.2024.06.010
• Research Article • Previous Articles Next Articles
Zunxing Chua, Juntao Gaoa, Qiang Lia,*, Tian Xiaa, Liping Sun a, Hui Zhaoa,*, Ivan V. Kovalevb, Rostislav D. Guskovb, Mikhail P. Popovb, A.P. Nemudryb
Received:
2024-04-09
Revised:
2024-06-03
Accepted:
2024-06-04
Published:
2025-03-20
Online:
2025-03-14
Contact:
*E-mail addresses: liqiang@hlju.edu.cn (Q. Li), zhaohui98@hlju.edu.cn (H. Zhao)
Zunxing Chu, Juntao Gao, Qiang Li, Tian Xia, Liping Sun a, Hui Zhao, Ivan V. Kovalev, Rostislav D. Guskov, Mikhail P. Popov, A.P. Nemudry. Highly oxygen reduction activity and CO2 resistance of Fe-based cathode electrocatalysts for solid oxide fuel cells[J]. J. Mater. Sci. Technol., 2025, 212: 303-311.
[1] Y. Zhang, B. Chen, D. Guan, M. Xu, R. Ran, M. Ni, W. Zhou, R. O'Hayre, Z. Shao, Nature 591 (2021) 246-251. [2] J. Gong, J. Hou, J. Mater. Sci.Technol. 186(2024) 158-163. [3] P. Qiu, C. Li, B. Liu, D. Yan, J. Li, L. Jia, J. Adv. Ceram. 12(2023) 1463-1510. [4] S. Jiang, Int. J. Hydrog. Energy 44 (2019) 7448-7493. [5] Y. Wan, Y. Xing, Y. Li, D. Huan, C. Xia, J. Power Sources 402 (2018) 363-372. [6] Y. Niu, X. Yin, C. Sun, X. Song, N. Zhang, J. Alloy. Compd. 865(2021) 158746. [7] M.P. Popov, I.A. Starkov, S.F. Bychkov, A.P. Nemudry, J. Membr. Sci. 469(2014) 88-94. [8] X. Ding, Z. Gao, D. Ding, X. Zhao, H. Hou, S. Zhang, G. Yuan, Appl. Catal. B-En-viron. 243(2019) 546-555. [9] W. Yi, Y. Tian, C. Lu, B. Wang, Y. Liu, S. Gao, B. Niu, J. Eur. Ceram.Soc. 42(2022) 2860-2869. [10] J. Gao, Y. Liu, Y. Gao, M. Yuan, Z. Wang, Z. Lü, Q. Li, B. Wei, Chem. Eng. J. 452(2023) 139584. [11] T. Ma, T. Xia, Q. Li, L. Huo, H. Zhao, Int. J. Hydrog. Energy 47 (2022) 22963-22971. [12] N. Xu, T. Zhu, Z. Yang, M. Han, J. Mater. Sci.Technol. 32(2017) 1329-1333. [13] J.S. Lim, J.H. Lee, H.S. Park, R. Gao, T.Y. Koo, L.W. Martin, R. Ramesh, C.H. Yang, NPG Asia Mater. 10(2018) 943-955. [14] N. Masó, A.R. West, Chem. Mater. 24(2012) 2127-2132. [15] J. Lim, H. Nahm, M. Campanini, J. Lee, Y. Kim, H. Park, J. Suh, J. Jung, Y. Yang, T. Koo, M. Rossell, Y. Kim, C. Yang, Nat. Commun. 13(2022) 5130. [16] R. Afzal, K. Park, S. Cho, N. Kim, S. Choi, J. Kim, H. Lim, J. Park, RSC Adv. 7(2017) 47643-47653. [17] L. Wang, T. Xia, L. Sun, Q. Li, H. Zhao, RSC Adv. 13(2023) 2339-2344. [18] T. Ma, T. Xia, Q. Li, L. Sun, L. Huo, H. Zhao, J. Eur. Ceram.Soc. 42(2022) 4 90-4 98. [19] W. Zhang, L. Zhang, K. Guan, X. Zhang, J. Meng, H. Wang, X. Liu, J. Meng, J. Power Sources 446 (2020) 227360. [20] Y. Gou, G. Li, R. Ren, C. Xu, J. Qiao, W. Sun, K. Sun, Z. Wang, ACS Appl. Mater. Interfaces 13 (2021) 20174-20184. [21] J. Gao, Z. Wei, M. Yuan, Z. Wang, Z. Lü, Q. Li, L. Xu, B. Wei, J. Energy Chem. 90(2024) 600-609. [22] Z. Shao, S.M. Haile, Nature 431 (2004) 170-173. [23] J. Zhu, S. Guo, Z. Chu, W. Jin, J. Mater. Chem. A 3 (2015) 22564-22573. [24] J. Gao, D. Ma, H. Zhao, Q. Li, Z. Lü, B. Wei, Energy 252 (2022) 124050. [25] W. Zhu, J. Chen, D. Liu, G. Yang, W. Zhou, R. Ran, J. Yu, Z. Shao, Mat. Chem. Front. 7(2023) 4526-4534. [26] Y. Dai, J. Yu, Z. Zhang, C. Cheng, P. Tan, Z. Shao, M. Ni, ACS Appl. Mater. Inter-faces 13 (2021) 2799-2806. [27] J. Gao, Q. Li, W. Xia, L. Sun, L. Huo, H. Zhao, ACS Sustain. Chem. Eng. 7(2019) 18647-18656. [28] C. Sun, Y. Kong, L. Shao, K. Sun, N. Zhang, J. Power Sources 459 (2020) 228017. [29] Y. Huang, A. Hussain, E. Wachsman, Nano Energy 49 (2018) 186-192. [30] A. Subramania, T. Saradha, S. Muzhumathi, J. Power Sources 165 (2007) 728-732. [31] M. Zhang, Y. Li, Z. Du, Y. Zhang, H. Zhao, J. Power Sources 594 (2024) 234031. [32] C. Yao, J. Yang, S. Chen, J. Meng, K. Cai, Q. Zhang, J. Alloy. Compd. 868(2021) 159127. [33] X. Song, S. Le, X. Zhu, L. Qin, Y. Luo, Y. Li, K. Sun, Y. Chen, Int. J. Hydrog. Energy 42 (2017) 15808-15817. [34] X. Yu, J. Fan, L. Xue, Ceram. Int. 40(2014) 13627-13634. [35] Y. Liu, Y. Cao, S. Sun, C. Lu, B. Wang, G. Liu, S. Gao, B. Niu, J. Eur. Ceram.Soc. 43(2023) 1028-1038. [36] T. Song, T. Xia, L. Sun, Q. Li, H. Zhao, Ceram. Int. 49(2023) 35812-35820. [37] D. Huan, L. Zhang, K. Zhu, X. Li, B. Zhang, J. Shi, R. Peng, C. Xia, Sep. Purif. Technol. 290(2022) 120843. [38] C. Sun, Y. Kong, Y. Niu, X. Yin, N. Zhang, ACS Appl. Energy Mater. 5(2022) 4 486-4 495. [39] J. Teng, T. Xia, L. Sun, L. Huo, Q. Li, H. Zhao, J. Alloy. Compd. 929(2022) 167311. [40] Z. Yu, X. Zhang, Z. Lü, H. Li, J. Alloy. Compd. 980(2024) 173646. [41] Q. Liu, X. Dong, G. Xiao, F. Zhao, F. Chen, Adv. Mater. 22(2010) 5478-5482. [42] H. Li, B. Wei, C. Su, C. Wang, Z. Lü, J. Power Sources 453 (2020) 227875. [43] W. Fan, Z. Sun, J. Zhou, K. Wu, Y. Cheng, J. Power Sources 348 (2017) 94-106. [44] M. Guo, T. Xia, Q. Li, L. Sun, H. Zhao, J. Eur. Ceram.Soc. 41(2021) 6531-6538. [45] M. Escudero, A. Aguadero, J. Alonso, L. Daza, J. Electroanal. Chem. 611(2007) 107-116. [46] A. Bieberlehutter, M. Sogaard, H. Tuller, Solid State Ionics 177 (2006) 1969-1975. [47] W. Zhou, R. Ran, Z. Shao, W. Jin, N. Xu, J. Power Sources 182 (2008) 24-31. [48] J. Peña-Martínez, D. Marrero-López, J.C. Ruiz-Morales, P. Núñez, C. Sánchez-Bautista, A.J. Dos Santos-García, J. Canales-Vázquez, Int. J. Hy-drog. Energy 34 (2009) 9486-9495. [49] Q. Li, L. Sun, X. Zeng, H. Zhao, L. Huo, J. Grenier, J. Bassat, F. Mauvy, J. Power Sources 238 (2013) 11-16. [50] Z. Lou, N. Dai, Z. Wang, Y. Dai, Y. Yan, J. Qiao, J. Peng, J. Wang, K. Sun, J. Solid State Electrochem. 17(2013) 2703-2709. [51] G. Xiao, Q. Liu, F. Zhao, L. Zhang, C. Xia, F. Chen, J. Electrochem. Soc. 158(2011) B455-B460. [52] Y. Zhu, W. Zhou, Y. Chen, Z. Shao, Angew. Chem. Int. Edit. 55(2016) 8988-8993. [53] W. Zhang, H. Muroyama, Y. Mikami, T. Matsui, K. Eguchi, J. Energy Chem. 87(2023) 450-459. [54] Y. Zhang, J. Li, H. Xie, Z. Liu, S. Shen, Y. Teng, D. Guan, S. Zhai, Y. Song, W. Zhou, B. Chen, M. Ni, Z. Shao, Chem. Eng. J. 462(2023) 142216. [55] Y. Zhu, J. Sunarso, W. Zhou, Z. Shao, Appl. Catal. B-Environ.172-173(2015) 52-57. [56] B. Gu, J. Sunarso, Y. Zhang, Y. Song, G. Yang, W. Zhou, Z. Shao, J. Power Sources 405 (2018) 124-131. [57] Y. Zhang, G. Yang, G. Chen, R. Ran, W. Zhou, Z. Shao, ACS Appl. Mater. Inter-faces 8 (2016) 3003-3011. |
[1] | Bo Zhang, Kang Li, Renfu Li, Shoufeng Wang, Longtian Kang. Insight into bay-/end-substituted perylene diimide and its S-scheme heterojunction for enhanced photocatalytic H2O2 production under visible-light irradiation [J]. J. Mater. Sci. Technol., 2025, 206(0): 257-268. |
[2] | Juan He, Chao Chen, Hailong Yu, Yang Zhao, Ming Xu, Ting Xiong, Qiuhong Lu, Zhi Yu, Kaiping Tai, Jun Tan, Chang Liu. Epitaxial growth of highly atomically ordered Pt-Fe nanoparticles from carbon nanotube bundles as durable oxygen reduction electrocatalysts [J]. J. Mater. Sci. Technol., 2025, 212(0): 139-147. |
[3] | Haoran Jiang, Zichen Wang, Suhao Chen, Yong Xiao, Yu Zhu, Wei Wu, Runzhe Chen, Niancai Cheng. Atomic controlled shell thickness on Pt@Pt3Ti core-shell nanoparticles for efficient and durable oxygen reduction [J]. J. Mater. Sci. Technol., 2025, 205(0): 212-220. |
[4] | Xin Yang, Lijie Zhong, Songxin Ye, Dequan He, Shuxian Yuan, Huixin Li, Yuting Ma, Xiaocheng Mo, Shiyu Gan, Li Niu. Sulfur poisoned PtNi/C catalysts toward two-electron oxygen reduction reaction for acidic electrosynthesis of hydrogen peroxide [J]. J. Mater. Sci. Technol., 2025, 204(0): 268-275. |
[5] | Chunyao Fang, Xihang Zhang, Qiang Zhang, Di Liu, Xiaomeng Cui, Jingcheng Xu, Chenglong Shi, Renxian Qin. Theoretical inspection of high-efficiency single-atom catalysts based on π-π conjugated holey graphitic g-C7N3 monolayer: Marvelous water-splitting and oxygen reduction reactions activities [J]. J. Mater. Sci. Technol., 2024, 198(0): 143-157. |
[6] | Wenyi Li, Zhenxin Zhao, Jinyu Zhao, Yongzhen Wang, Xiaomin Wang. High entropy La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 with tailored eg occupancy and transition metal-oxygen bond properties for oxygen reduction reaction [J]. J. Mater. Sci. Technol., 2024, 194(0): 236-246. |
[7] | Na Li, Le Li, Jiawei Xia, Muhammad Arif, Shilong Zhou, Fengxiang Yin, Guangyu He, Haiqun Chen. Single-atom Co-N4 catalytic sites anchored on N-doped ordered mesoporous carbon for excellent Zn-air batteries [J]. J. Mater. Sci. Technol., 2023, 139(0): 224-231. |
[8] | Anuj Kumar, Mohd Ubaidullah, Guoxin Zhang, Jasvinder Kaur, Saira Ajmal, Mudassir Hasan, Krishna Kumar Yadav, Hafiz M. Adeel Sharif, Ram K. Gupta, Ghulam Yasin. Smart tailoring of molecular catalysts: Mounting approach to oxygen reduction reaction [J]. J. Mater. Sci. Technol., 2023, 168(0): 169-184. |
[9] | Yunwei Liu, Zelin Chen, Chang Liu, Jinfeng Zhang, Wenbin Hu, Yida Deng. Exploiting H-induced lattice expansion in β-palladium hydride for enhanced catalytic activities toward oxygen reduction reaction [J]. J. Mater. Sci. Technol., 2022, 98(0): 205-211. |
[10] | Jing Li, Fan Yang, Yunzhu Du, Xiyang Cai, Qiaodan Hu, Junliang Zhang. Bi0.15Sr0.85Co0.8Fe0.2O3-δ perovskite: A novel bifunctional oxygen electrocatalyst with superior durability in alkaline media [J]. J. Mater. Sci. Technol., 2022, 108(0): 158-163. |
[11] | Guanglu Li, Chang Liu, Zhao Zhang, Baihua Cui, Yanan Chen, Yida Deng, Wenbin Hu. Nano-manufacturing of Co(OH)2@NC for efficient oxygen evolution/reduction reactions [J]. J. Mater. Sci. Technol., 2021, 81(0): 131-138. |
[12] | Meigui Xu, Hainan Sun, Wei Wang, Yujuan Shen, Wei Zhou, Jun Wang, Zhi-Gang Chen, Zongping Shao. Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution [J]. J. Mater. Sci. Technol., 2020, 39(0): 22-27. |
[13] | Zhu Jie, Xiong Zewei, Zheng Jiming, Luo Zhihong, Zhu Guangbin, Xiao Chao, Meng Zhengbing, Li Yibing, KunLuo. Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction [J]. J. Mater. Sci. Technol., 2019, 35(11): 2543-2551. |
[14] | Zongying Han, Zhibin Yang, Minfang Han. Cell-protecting regeneration from anode carbon deposition using in situ produced oxygen and steam: A combined experimental and theoretical study [J]. J. Mater. Sci. Technol., 2018, 34(12): 2375-2383. |
[15] | Xu Na, Zhu Tenglong, Yang Zhibin, Han Minfang. Fabrication and optimization of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ electrode for symmetric solid oxide fuel cell with zirconia based electrolyte [J]. J. Mater. Sci. Technol., 2017, 33(11): 1329-1333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||