J. Mater. Sci. Technol. ›› 2025, Vol. 204: 245-254.DOI: 10.1016/j.jmst.2024.02.083
• Research Article • Previous Articles Next Articles
Yasong Wu, Lu Liu, Jinyan Ning, Di Qiu*, Shenghao Wang, Jinyang Xi*, Jiong Yang*
Received:
2024-02-08
Accepted:
2024-02-12
Published:
2025-01-01
Online:
2024-04-12
Contact:
*E-mail addresses: diqiu0319@shu.edu.cn (D. Qiu), jinyangxi@t.shu.edu.cn (J. Xi), jiongy@t.shu.edu.cn (J. Yang).
Yasong Wu, Lu Liu, Jinyan Ning, Di Qiu, Shenghao Wang, Jinyang Xi, Jiong Yang. Diverse carrier mobilities in halide perovskites: The role of conductive network and ionized impurity scattering[J]. J. Mater. Sci. Technol., 2025, 204: 245-254.
[1] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett. 13(2013) 1764-1769. [2] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E.Curchod, N. Ashari-As-tani, I.Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Nat. Chem. 6(2014) 242-247. [3] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338 (2012) 643-647. [4] Q.F. Dong, Y.J. Fang, Y.C. Shao, P. Mulligan, J. Qiu, L. Cao, J.S. Huang, Science 347 (2015) 967-970. [5] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342 (2013) 341-344. [6] T.J. Milstein, D.M. Kroupa, D.R. Gamelin, Nano Lett. 18(2018) 3792-3799. [7] S.K. Ha, C.M. Mauck, W.A. Tisdale, Chem. Mater. 31(2019) 24 86-24 96. [8] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem.Soc. 131(2009) 6050-6051. [9] Y.Y. Zhou, Y.X. Zhao, Energy Environ. Sci. 12(2019) 1495-1511. [10] X.M. Li, Y. Wu, S.L. Zhang, B. Cai, Y. Gu, J.Z. Song, H.B. Zeng, Adv. Funct. Mater. 26(2016) 2435-2445. [11] J.T.DuBose, P.V. Kamat, ACS Energy Lett. 7(2022) 1994-2011. [12] Z.W. Xiao, Z.N. Song, Y.F. Yan, Adv. Mater. 31(2019) 1803792. [13] B. Yang, J.S. Chen, F. Hong, X. Mao, K.B. Zheng, S.Q. Yang, Y.J. Li, T. Pullerits, W.Q. Deng, K.L. Han, Angew. Chem. Int. Ed. 56(2017) 12471-12475. [14] Q.L. Xu, D.W. Yang, J. Lv, Y.Y. Sun, L.J. Zhang, Small Methods 2 (2018) 1700316. [15] X.T. Li, J.B. Wu, S.H. Wang, Y.B. Qi, Chem. Lett. 48(2019) 989-1005. [16] X.L. Yang, X.B. Xu, G.J. Zhou, J. Mater. Chem. C 3 (2015) 913-944. [17] H. Wang, C.Q. Zhang, W.Q. Huang, X.P. Zou, Z.Y. Chen, S.L. Sun, L.X. Zhang, J.M. Li, J. Cheng, S.X. Huang, M.K. Gu, X.Y. Chen, X. Guo, R.X. Gui, W.M. Wang, Phys. Chem. Chem. Phys. 24(2022) 27585-27605. [18] F. Giustino, H.J. Snaith, ACS Energy Lett. 1(2016) 1233-1240. [19] H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, S. Il Seok, Nature 598 (2021) 4 4 4-450. [20] L.B. Qiu, L.K. Ono, Y.B. Qi, Mater. Today Energy 7 (2018) 169-189. [21] L.K. Ono, N.G. Park, K. Zhu, W. Huang, Y.B. Qi, ACS Energy Lett. 2(2017) 1749-1751. [22] L.K. Ono, Y.B. Qi, S.Z. Liu, Joule 2 (2018) 1961-1990. [23] M.G. Ju, M. Chen, Y.Y. Zhou, J. Dai, L. Ma, N.P. Padture, X.C. Zeng, Joule 2 (2018) 1231-1241. [24] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, J. Phys. Chem.Lett. 7(2016) 167-172. [25] C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52(2013) 9019-9038. [26] C.Z. Xu, S.C. Zhang, W.Q. Fan, F.Y. Cheng, H.C. Sun, Z. Kang, Y. Zhang, Adv. Mater. 35(2023) 2207172. [27] B. Lee, C.C. Stoumpos, N.J. Zhou, F. Hao, C. Malliakas, C.Y. Yeh, T.J. Marks, M.G. Kanatzidis, R.P.H.Chang, J. Am. Chem. Soc. 136(2014) 15379-15385. [28] X.F. Qiu, B.Q. Cao, S. Yuan, X.F. Chen, Z.W. Qiu, Y.N. Jiang, Q. Ye, H.Q. Wang, H.B. Zeng, J. Liu, M.G. Kanatzidis, Sol. Energy Mater. Sol. Cells 159 (2017) 227-234. [29] B. Saparov, J.P. Sun, W.W. Meng, Z.W. Xiao, H.S. Duan, O. Gunawan, D. Shin, I.G. Hill, Y.F. Yan, D.B. Mitzi, Chem. Mater. 28(2016) 2315-2322. [30] A. Singh, K.M. Boopathi, A. Mohapatra, Y.F. Chen, G. Li, C.W. Chu, ACS Appl. Mater. Interfaces 10 (2018) 2566-2573. [31] B. Lee, A. Krenselewski, S.I. Baik, D.N. Seidman, R.P.H. Chang, Sustain. Energy Fuels 1 (2017) 710-724. [32] M. Chen, M.G. Ju, A.D. Carl, Y.X. Zong, R.L. Grimm, J.J. Gu, X.C. Zeng, Y.Y. Zhou, N.P. Padture, Joule 2 (2018) 558-570. [33] F.Y. Jiang, D.W. Yang, Y.Y. Jiang, T.F. Liu, X.G. Zhao, Y. Ming, B.W. Luo, F. Qin, J.C. Fan, H.W. Han, L.J. Zhang, Y.H. Zhou, J. Am. Chem.Soc. 140(2018) 1019-1027. [34] A. Baumann, J. Lorrmann, D. Rauh, C. Deibel, V. Dyakonov, Adv. Mater. 24(2012) 4381-4386. [35] V.D. Mihailetchi, J. Wildeman, P.W.M.Blom, Phys. Rev. Lett. 94(2005) 126602. [36] C.M. Proctor, C. Kim, D. Neher, T.Q. Nguyen, Adv. Funct. Mater. 23(2013) 3584-3594. [37] C.M. Proctor, J.A. Love, T.Q. Nguyen, Adv. Mater. 26(2014) 5957-5961. [38] A. Wagenpfahl, C. Deibel, V. Dyakonov, IEEE J. Sel. Top. Quantum Electron. 16(2010) 1759-1763. [39] I. Chung, J.H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, J.T. Kenney, M.G. Kanatzidis, J. Am. Chem.Soc. 134(2012) 8579-8587. [40] Y.X. Feng, L. Pan, H.T. Wei, Y. Liu, Z.Y. Ni, J.J. Zhao, P.N. Rudd, L.R. Cao, J.S. Huang, J. Mater. Chem. C 8 (2020) 11360-11368. [41] Y.H. He, Z.F. Liu, K.M.McCall, W.W. Lin, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 922(2019) 217-221. [42] Y.H. He, L. Matei, H.J. Jung, K.M.McCall, M.Chen, C.C. Stoumpos, Z.F. Liu, J.A. Peters, D.Y. Chung, B.W. Wessels, M.R. Wasielewski, V.P. Dravid, A. Burger, M.G. Kanatzidis, Nat. Commun. 9(2018) 1609. [43] Y.H. He, C.C. Stoumpos, I. Hadar, Z.Z. Luo, K.M.McCall, Z.F. Liu, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, J. Am. Chem. Soc. 143(2021) 2068-2077. [44] J.M. Li, J.T. Huang, A.D. Zhao, Y.F. Li, M.D. Wei, J. Mater. Chem. C 8 (2020) 8840-8845. [45] J.S. Wu, F. Fang, Z. Zhao, T. Li, R. Ullah, Z. Lv, Y.W. Zhou, D. Sawtell, RSC Adv. 9(2019) 37119-37126. [46] T. Ye, K. Wang, Y.C. Hou, D. Yang, N. Smith, B. Magill, J.J. Yoon, R.R.H.H. Mudiyanselage, G.A. Khodaparast, K. Wang, S. Priya, J. Am. Chem.Soc. 143(2021) 4319-4328. [47] A .E. Maughan, A .M. Ganose, A .M. Candia, J.T. Granger, D.O. Scanlon, J.R. Neil-son, Chem. Mater. 30(2017) 472-483. [48] D.X. Ju, X.M. Jiang, H. Xiao, X. Chen, X.B. Hu, X.T. Tao, J. Mater. Chem. A 6 (2018) 20753-20759. [49] K.M. McCall, Z.F. Liu, G. Trimarchi, C.C. Stoumpos, W.W. Lin, Y.H. He, I. Hadar, M.G. Kanatzidis, B.W. Wessels, ACS Photonics 5 (2018) 3748-3762. [50] C.S.Ponseca Jr., T.J. Savenije, M. Abdellah, K.B. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.P. Wolf, V. Sundstrom, J. Am. Chem. Soc. 136(2014) 5189-5192. [51] D.A.Valverde-Chávez, C.S. Ponseca, C.C. Stoumpos, A. Yartsev, M.G. Kanatzidis, V. Sundström, D.G. Cooke, Energy Environ. Sci. 8(2015) 3700-3707. [52] L. Pan, Y.X. Feng, J.S. Huang, L.R. Cao, IEEE Trans. Nucl. Sci. 67(2020) 2255-2262. [53] C.C. Stoumpos, C.D. Malliakas, J.A. Peters, Z.F. Liu, M. Sebastian, J. Im, T.C. Chasapis, A.C. Wibowo, D.Y. Chung, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis, Cryst. Growth Des. 13(2013) 2722-2727. [54] G.R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal, Nano Lett. 16 (2016) 4 838-4 84 8. [55] Z. Zhang, B. Saparov, Appl. Phys. Lett. 119(2021) 030502. [56] Y. Takahashi, H. Hasegawa, Y. Takahashi, T. Inabe, J. Solid State Chem. 205(2013) 39-43. [57] H. Oga, A. Saeki, Y. Ogomi, S. Hayase, S. Seki, J. Am. Chem.Soc. 136(2014) 13818-13825. [58] A .E. Maughan, A .M. Ganose, M.M. Bordelon, E.M. Miller, D.O. Scanlon, J.R. Neilson, J. Am. Chem. Soc. 138(2016) 8453-8464. [59] J.Y. Zhou, N. Lei, H.Q. Zhou, Y. Zhang, Z.Y. Tang, L. Jiang, J. Mater. Chem. C 6 (2018) 6556-6564. [60] T. Leijtens, S.D. Stranks, G.E. Eperon, R. Lindblad, E.M.J. Johansson, I.J. McPher-son, H. Rensmo, J.M. Ball, M.M. Lee, H.J. Snaith, ACS Nano 8 (2014) 7147-7155. [61] U.H. Ko, J.H. Ri, J.H. Jang, C.H. Ri, U.G. Jong, C.J. Yu, RSC Adv. 12(2022) 9755-9762. [62] Y. Su, H. Wang, L.B. Shi, Y.Z. Wang, Q. Liu, P. Qian, Mater. Sci. Semicond. Pro-cess. 150(2022) 106836. [63] Y.R. Ying, X. Luo, H.T. Huang, J. Phys. Chem. C 122 (2018) 17718-17725. [64] Y.W. Wang, Y.B. Zhang, P.H. Zhang, W.Q. Zhang, Phys. Chem. Chem. Phys. 17(2015) 11516-11520. [65] T.Q. Zhao, W. Shi, J.Y. Xi, D. Wang, Z.G. Shuai, Sci. Rep. 7(2016) 19968. [66] B. Rezini, T. Seddik, R. Mouacher, T.V. Vu, M. Batouche, O.Y. Khyzhun, Int. J. Quantum Chem. 122(2022) 26977. [67] W.H. Guo, J.H. Shi, Y.H. Zhu, M. Wu, J. Du, Y.L. Cen, S.M. Liu, S.P. Han, Phys. Rev. Appl. 13(2020) 024031. [68] S. Cao, Y. Su, K.K. Song, P. Qian, Y. Yan, L.B. Shi, J. Phys. Condes. Matter 35 (2022) 055702. [69] G.M. Dalpian, Q.H. Liu, C.C. Stoumpos, A.P. Douvalis, M. Balasubramanian, M.G. Kanatzidis, A. Zunger, Phys. Rev. Mater. 1(2017) 025401. [70] Y.M. Chu, Y. Hu, Z.W. Xiao, J. Phys. Chem. C 125 (2021) 9688-9694. [71] H. Peng, R.J. Sa, D.W. Liu, J. Solid State Chem. 310(2022) 123055. [72] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186. [73] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775. [74] P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979. [75] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868. [76] J.W. Furness, A.D. Kaplan, J.L. Ning, J.P. Perdew, J.W. Sun, J. Phys. Chem.Lett. 11(2020) 8208-8215. [77] R. Dronskowski, P.E. Bloechl, J. Phys. Chem. 97(1993) 8617-8624. [78] S. Maintz, V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, J. Comput. Chem. 37(2016) 1030-1035. [79] P.M. Konze, R. Dronskowski, V.L. Deringer, Phys. Status Solidi-Rapid Res. Lett. 13(2019) 1800579. [80] J. Yang, L. Xi, W. Zhang, L.D. Chen, J.H. Yang, J. Electron. Mater. 38(2009) 1397-1401. [81] L.L. Xi, S.S. Pan, X. Li, Y.L. Xu, J.Y. Ni, X. Sun, J. Yang, J. Luo, J.Y. Xi, W.H. Zhu, X.R. Li, D. Jiang, R. Dronskowski, X. Shi, G.J. Snyder, W.Q. Zhang, J. Am. Chem.Soc. 140(2018) 10785-10793. [82] X. Li, Z. Zhang, J.Y. Xi, D.J. Singh, Y. Sheng, J. Yang, W.Q. Zhang, Comput. Mater. Sci. 186(2021) 110074. [83] J.M. Ziman, Principles of the Theory of Solids, 2nd ed., Cambridge University Press, Cambridge, 1972. [84] J.Y. Xi, M.Q. Long, L. Tang, D. Wang, Z.G. Shuai, Nanoscale 4 (2012) 4348-4369. [85] J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford University Press, 2001. [86] J. Bardeen, W. Shockley, Phys. Rev. 80(1950) 72-80. [87] J.X. Zhang, Z. Zhang, L.L. Xi, J.Y. Xi, J. Yang, J. Mater. 8(2022) 1222-1229. [88] G. Engel, Naturwissenschaften 21 (1933) 704. [89] A. Kaltzoglou, M. Antoniadou, A.G. Kontos, C.C. Stoumpos, D. Perganti, E. Sir-anidi, V. Raptis, K. Trohidou, V. Psycharis, M.G. Kanatzidis, P. Falaras, J. Phys. Chem. C 120 (2016) 11777-11785. [90] E.E. Morgan, L.L. Mao, S.M.L.Teicher, G. Wu, R.Seshadri, Inorg. Chem. 59(2020) 3387-3393. [91] M. Sebastian, J.A. Peters, C.C. Stoumpos, J. Im, S.S. Kostina, Z. Liu, M.G. Kanatzidis, A.J. Freeman, B.W. Wessels, Phys. Rev. B 92 (2015) 235210. [92] S.X. Tao, I. Schmidt, G. Brocks, J.K. Jiang, I. Tranca, K. Meerholz, S. Olthof, Nat. Commun. 10(2019) 2560. [93] S.S. Wang, M.L. Huang, Y.N. Wu, S.Y. Chen, Adv. Theory Simul. 4 (2021) 210 0 060. [94] G. Zhang, C.W. Yuan, X.F. Li, L. Yang, W.J. Yang, R.M. Fang, Y.J. Sun, J.P. Sheng, F. Dong, Chem. Eng. J. 430(2022) 132974. [95] J. Zhang, Y. Yang, H. Deng, U. Farooq, X.K. Yang, J. Khan, J. Tang, H.S. Song, ACS Nano 11 (2017) 9294-9302. [96] L. Zhang, L.R. Wang, K. Wang, B. Zou, J. Phys. Chem. C 122 (2018) 15220-15225. [97] A .V. Krukau, O.A. Vydrov, A .F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125(2006) 224106. [98] J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118(2003) 8207-8215. [99] J.Y. Ning, L.L. Zheng, W.X. Lei, S.H. Wang, J.Y. Xi, J. Yang, Phys. Chem. Chem. Phys. 24(2022) 16003-16010. [100] J.Y. Xi, L.L. Zheng, S.H. Wang, J. Yang, W.Q. Zhang, J. Comput. Chem. 42(2021) 2213-2220. [101] M.J. Yao, Y.X. Wang, X. Li, Y. Sheng, H.Y. Huo, L.L. Xi, J. Yang, W.Q. Zhang, Sci. Data 8 (2021) 236. [102] A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92(1990) 5397-5403. [103] A. Kumar, A. Singh, A .K. Ojha, J. Phys. Chem. C 123 (2019) 13385-13393. [104] J. Navas, A. Sanchez-Coronilla, J.J. Gallardo, N.C. Hernandez, J.C. Pinero, R. Al-cantara, C. Fernandez-Lorenzo, D.M. De los Santos, T. Aguilar, J. Martin-Calleja, Nanoscale 7 (2015) 6216-6229. [105] Z. Zhao, J.S. Wu, F. Fang, T. Li, Y.W. Zhou, J. Wang, Mater. Res. Express 6 (2019) 125534. [106] D.W. Zhou, X.L. Jin, X. Meng, G. Bao, Y.M. Ma, B.B. Liu, T. Cui, Phys. Rev. B 86 (2012) 014118. [107] S.N. Zhu, J.T. Ye, Y.Y. Zhao, Y.Q. Qiu, J. Phys. Chem. C 123 (2019) 20476-20487. [108] B. Silvi, A. Savin, Nature 371 (1994) 6 83-6 86. [109] C. Kittel, Wiley, 2004. [110] P. Graziosi, C. Kumarasinghe, N. Neophytou, ACS Appl. Energy Mater. 3(2020) 5913-5926. [111] V. Askarpour, J. Maassen, Phys. Rev. B 107 (2023) 045203. [112] C. Rudderham, J. Maassen, J. Appl. Phys. 127(2020) 065105. [113] E. Witkoske, X.F. Wang, M. Lundstrom, V. Askarpour, J. Maassen, J. Appl. Phys. 122(2017) 175102. [114] R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, MRS Commun. 5(2015) 265-275. [115] M.H. Du, J. Mater. Chem. A 2 (2014) 9091-9098. |
[1] | Yong Fan, Jinfeng Nie, Zhigang Ding, Yujing Zhang, Xiang Chen, Wei Liu, Sen Yang, Sida Liu, Xiangfa Liu, Yonghao Zhao. A facile high-efficiency preparation strategy for Al-containing multi-component boride microcrystals with superior comprehensive performance [J]. J. Mater. Sci. Technol., 2025, 204(0): 190-203. |
[2] | Runqi Zhang, Qinyang Zhao, Dizi Guo, Yang Ying, Huan Wang, Zhongli Qiao, Yunbo Zhang, Lin Wang, Yongqing Zhao. High impact toughness of CT20 alloy induced by multi-factor coupling [J]. J. Mater. Sci. Technol., 2024, 192(0): 65-81. |
[3] | J.X. Yan, J.Y. Qin, J.H. Liu, H. Chen, Y.H. Huang, M. Liu, C.H. Xia, F. Wang, X.D. Cui, J.B. Yang, Z.F. Zhang. Composition design study of strong and ductile Mo-alloyed CoCrNi medium-entropy alloys [J]. J. Mater. Sci. Technol., 2024, 186(0): 37-47. |
[4] | Junwen Lai, Jiangxu Li, Peitao Liu, Yan Sun, Xing-Qiu Chen. First-principles study on the electronic structure of Pb10-xCux(PO4)6O (x = 0, 1) [J]. J. Mater. Sci. Technol., 2024, 171(0): 66-70. |
[5] | Han-Ming Zhang, Lihao Zuo, Yuhang Gao, Junxia Guo, Caizhen Zhu, Jian Xu, Jinfeng Sun. Amorphous high-entropy phosphoxides for efficient overall alkaline water/seawater splitting [J]. J. Mater. Sci. Technol., 2024, 173(0): 1-10. |
[6] | Zhenyu Xiao, Shiwei Xu, Weiying Huang, Haifeng Liu, Xuyue Yang, Haikun Xu, Chao Ma, Chen Jin, Zhanhong Lin. Unexpected effects on creep resistance of an extruded Mg-Bi alloy by Zn and Ca co-addition: Experimental studies and first-principles calculations [J]. J. Mater. Sci. Technol., 2024, 201(0): 166-186. |
[7] | Qilong Liu, Xiwu Li, Wei Xiao, Zhihui Li, Kai Zhu, Kai Wen, Lizhen Yan, Yanan Li, Yongan Zhang, Manling Sui, Baiqing Xiong. Disclosing the formation mechanisms of Ag-containing Laves phases at the atomic scale in an Al-Cu-Mg-Ag alloy [J]. J. Mater. Sci. Technol., 2024, 184(0): 111-121. |
[8] | Lipeng Ding, Mingqi Zhao, Flemming J.H. Ehlers, Zhihong Jia, Zezhong Zhang, Yaoyao Weng, Dominique Schryvers, Qing Liu, Hosni Idrissi. “Branched” structural transformation of the L12-Al3 Zr phase manipulated by Cu substitution/segregation in the Al-Cu-Zr alloy system [J]. J. Mater. Sci. Technol., 2024, 185(0): 186-206. |
[9] | L.Y. Hao, E.G. Fu. First-principles calculation on the electronic structures, phonon dynamics, and electrical conductivities of Pb10(PO4)6O and Pb9Cu(PO4)6O compounds [J]. J. Mater. Sci. Technol., 2024, 173(0): 218-224. |
[10] | Duowen Ma, Yansong Jia, Yang Li, Haibin Yang, Fengzhi Wang, Xinyu Zheng, Guining Shao, Qi Xiong, Zhihao Shen, Min Liu, Zirui Lou, Chaohua Gu. Anion modulate the morphological and electronic structure of NiFe-based electrocatalyst for efficient urea oxidation-assisted water electrolysis [J]. J. Mater. Sci. Technol., 2024, 197(0): 207-214. |
[11] | Pingbo Wang, Jun Shen, Tijun Chen, Jiqiang Ma, Qinglin Li, Shaokai Zheng. Simultaneously improving the strength and ductility of AZ91/GNPs composites through decorating graphene nanoplatelets with MgO [J]. J. Mater. Sci. Technol., 2024, 183(0): 133-151. |
[12] | Pei-Yu Cao, Jing Wang, Ping Jiang, Yun-Jiang Wang, Fu-Ping Yuan, Xiao-Lei Wu. Prediction of chemical short-range order in high-/medium-entropy alloys [J]. J. Mater. Sci. Technol., 2024, 169(0): 115-123. |
[13] | Zhihui Li, Hao Zhang, Jixin Chen, Jiemin Wang, Xiaohui Wang, Jinxing Yang, Chao Zhang, Zerong Zhang, Hongyang Liu, Fei Huang, Meishuan Li, Fei Li. Hydrolysis mechanism of YbB2C2 and the microstructure of the carbon derived from the hydrolysis reaction [J]. J. Mater. Sci. Technol., 2024, 171(0): 209-221. |
[14] | J.X. Yan, Z.J. Zhang, P. Zhang, J.H. Liu, H. Yu, Q.M. Hu, J.B. Yang, Z.F. Zhang. Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys [J]. J. Mater. Sci. Technol., 2023, 139(0): 232-244. |
[15] | Qianxing Yin, Guoqing Chen, Xi Shu, Binggang Zhang, Chun Li, Zhibo Dong, Jian Cao, Rong An, Yongxian Huang. Analysis of interaction between dislocation and interface of aluminum matrix/second phase from electronic behavior [J]. J. Mater. Sci. Technol., 2023, 136(0): 78-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||