J. Mater. Sci. Technol. ›› 2024, Vol. 169: 11-18.DOI: 10.1016/j.jmst.2023.05.043
• Research Article • Previous Articles Next Articles
Qingfeng Hua, Yuan Liua, Xuerong Zhengb, Jinfeng Zhanga, Jiajun Wanga,*, Xiaopeng Hana, Yida Denga,b,*, Wenbin Hua,c
Received:
2023-03-15
Revised:
2023-04-26
Accepted:
2023-05-16
Published:
2024-01-10
Online:
2023-06-29
Contact:
* School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Edu-cation, Tianjin University, Tianjin 300072, China. E-mail addresses: wangjiajun90@tju.edu.cn (J. Wang), yida.deng@tju.edu.cn, yd_deng@hainanu.edu.cn (Y. Deng) .
Qingfeng Hu, Yuan Liu, Xuerong Zheng, Jinfeng Zhang, Jiajun Wang, Xiaopeng Han, Yida Deng, Wenbin Hu. How the surface Cu layer affected the activity of Ni foil for alkaline hydrogen evolution[J]. J. Mater. Sci. Technol., 2024, 169: 11-18.
[1] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Science 355 (2017) eaad4998. [2] M.K. Debe, Nature 486 (2012) 43-51. [3] Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44(2015) 2060-2086. [4] S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu, S. Jiao, Adv. Energy Mater. 6(2016) 1600137. [5] M.L. Yu, K. Wang, H. Vredenburg, Int. J. Hydrogen Energy 46 (2021) 21261-21273. [6] M. Momirlan, T. Veziroglu, Int. J. Hydrogen Energy 30 (2005) 795-802. [7] S. Sharma, S.K. Ghoshal, Renew. Sustain. Energy Rev. 43(2015) 1151-1158. [8] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Int. J. Hydrogen Energy 42 (2017) 23284-23291. [9] J.A. Turner, Science 305 (2004) 972-974. [10] J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Nat. Mater. 11(2012) 963-969. [11] Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Nat. Commun. 5(2014) 3783. [12] K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 36(2010) 307-326. [13] Z.Y. Yu, Y. Duan, X.Y. Feng, X. Yu, M.R. Gao, S.H. Yu, Adv. Mater. 33(2021) 2007100. [14] C. Hu, L. Zhang, J. Gong, Energy Environ. Sci. 12(2019) 2620-2645. [15] J. Wang, Y. Gao, H. Kong, J. Kim, S. Choi, F. Ciucci, Y. Hao, S. Yang, Z. Shao, J. Lim, Chem. Soc. Rev. 49(2020) 9154-9196. [16] X. Zou, Y. Zhang, Chem. Soc. Rev. 44(2015) 5148-5180. [17] K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y.R. Lu, T.S. Chan, F.M.F. de Groot, Y.Tan, Nat. Commun. 10(2019) 1743. [18] Q. Zou, Y. Akada, A. Kuzume, M. Yoshida, T. Imaoka, K. Yamamoto, Angew. Chem. Int. Edit. 61(2022) e202209675. [19] T.C. Phana, V.T. Nguyena, H.S. Choib, H.C. Kimc, Appl. Surf. Sci. 605(2022) 154331. [20] D. Li, X. Chen, Y. Lv, G. Zhang, Y. Huang, W. Liu, Y. Li, R. Chen, C. Nuckolls, H. Ni, Appl. Catal. B-Environ. 269(2020) 118824. [21] Y. Shi, Z.R. Ma, Y.Y. Xiao, Y.C. Yin, W.M. Huang, Z.C. Huang, Y.Z. Zheng, F.Y. Mu, R. Huang, G.Y. Shi, Y.Y. Sun, X.H. Xia, W. Chen, Nat. Commun. 12(2021) 3021. [22] K. Ngamlerdpokin, N. Tantavichet, Int. J. Hydrogen Energy 39 (2014) 2505-2515. [23] X. Liu, D. Wang, Y. Li, Nano Today 7 (2012) 448-466. [24] G. Kyriakou, M.B. Boucher, A.D. Jewell, E.A. Lewis, T.J. Lawton, A.E. Baber, H.L. Tierney, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Science 335 (2012) 1209-1212. [25] Z. Xia, S. Guo, Chem. Soc. Rev. 48(2019) 3265-3278. [26] H.L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, J. Am. Chem.Soc. 133(2011) 1304-1306. [27] Y.C. Wei, C.W. Liu, K.W. Wang, Chem. Commun. 47(2011) 11927-11929. [28] C. Wang, D. van der Vliet, K.L. More, N.J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A.P. Paulikas, G. Karapetrov, D. Strmcnik, N.M. Markovic, V.R. Stamenkovic, Nano Lett. 11(2011) 919-926. [29] J. Kim, H. Kim, W.J. Lee, B. Ruqia, H. Baik, H.S. Oh, S.M. Paek, H.K. Lim, C.H. Choi, S. Choi, J. Am. Chem.Soc. 141(2019) 18256-18263. [30] Z. Li, C. Yu, Y. Wen, Y. Gao, X. Xing, Z. Wei, H. Sun, Y.W. Zhang, W. Song, ACS Catal. 9(2019) 5084-5095. [31] G. Chen, S. Desinan, R. Nechache, R. Rosei, F. Rosei, D. Ma, Chem. Commun. 47(2011) 6308-6310. [32] A.S. Nair, B. Pathak, J. Phys. Chem. C 123 (2019) 3634-3644. [33] Z. Chen, S. Ye, A.R. Wilson, Y.C. Ha, B.J. Wiley, Energy Environ. Sci. 7(2014) 1461-1467. [34] S. Deng, B. Zhang, P. Choo, P.J.M.Smeets, T.W. Odom, Nano Lett. 21(2021) 1523-1529. [35] J. Suntivich, Z. Xu, C.E. Carlton, J. Kim, B. Han, S.W. Lee, N. Bonnet, N. Marzari, L.F. Allard, H.A. Gasteiger, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem.Soc. 135(2013) 7985-7991. [36] H. Liao, A. Fisher, Z.J. Xu, Small 11 (2015) 3221-3246. [37] N. Zhang, Q. Shao, X. Xiao, X. Huang, Adv. Funct. Mater. 29(2019) 1808161. [38] Y.T. Pan, H. Yang, Nano Today 31 (2020) 100832. [39] Y. He, Y. Li, J. Zhang, S. Wang, D. Huang, G. Yang, X. Yi, H. Lin, X. Han, W. Hu, Y. Deng, J. Ye, Nano Energy 77 (2020) 105010. [40] K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkoferf, H. Wang, Energy Environ. Sci. 11(2018) 893-903. [41] Y. Shen, Y. Zhou, D. Wang, X. Wu, J. Li, J. Xi, Adv. Energy Mater. 8(2018) 1701759. [42] S. Zhou, C. Lu, W. Zhou, Y. Bi, C. Zhou, A. Zeng, A. Wang, L. Tan, L. Dong, Chem. Commun. 58(2022) 11398-11401. [43] J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem.-Int. Edit. 54(2015) 2100-2104. [44] B.E. Conway, B.V. Tilak, Electrochim. Acta 47 (2002) 3571-3594. [45] J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 29(2017) 1605838. [46] N. Mahmood, Y.D. Yao, J.W. Zhang, L. Pan, X. Zhang, J.J. Zou, Adv. Sci. 5(2018) 1700464. [47] J.X. Wang, Y. Zhang, C.B. Capuano, K.E. Ayers, Sci. Rep. 5(2015) 12220. [48] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem.Soc. 137(2015) 2688-2694. [49] L. Tian, X. Yan, X. Chen, ACS Catal. 6(2016) 5441-5448. [50] Y. Yang, D. Xu, Q. Wu, P. Diao, Sci. Rep. 6(2016) 35158. [51] P. Dubot, D. Jouset, V. Pinet, F. Pellerin, J.P. Langeron, Surf. Interface Anal. 12(1988) 99-104. [52] L. Platzman, R. Brener, H. Haick, R. Tannenbaum, J. Phys. Chem. C 112 (2008) 1101-1108. [53] N. Pauly, S. Tougaard, F. Yubero, Surf. Sci. 630(2014) 294-299. [54] B. Timmermans, F. Reniers, A. Hubin, C. Buess-Herman, Appl. Surf. Sci. 144(1999) 54-58. [55] J. Ontaneda, R.A. Bennett, R. Grau-Crespo, J. Phys. Chem. C 119 (2015) 23436-23444. [56] H.W. Nesbitt, G.S. Henderson, G.M. Bancroft, C. O'Shaughnessy, Chem. Geol. 461(2017) 65-74. [57] J.X. Feng, J.Q. Wu, Y.X. Tong, G.R. Li, J. Am. Chem.Soc. 140(2018) 610-617. [58] S. Liang, S. Chen, Z. Guo, Z. Lan, H. Kobayashi, X. Yan, R. Li, Catal. Sci. Technol. 9(2019) 5292-5300. [59] M.T. Gorzkowski, A. Lewera, J. Phys. Chem. C 119 (2015) 18389-18395. [60] K.A. Kuttiyiel, K. Sasaki, Y.M. Choi, D. Su, P. Liu, R.R. Adzic, Energy Environ. Sci. 5(2012) 5297-5304. [61] X. Wang, Y. Zhu, A. Vasileff, Y. Jiao, S. Chen, L. Song, B. Zheng, Y. Zheng, S.Z. Qiao, ACS Energy Lett. 3(2018) 1198-1204. [62] E. Santos, K. Pötting, A. Lundin, P. Quaino, W. Schmickler, ChemPhysChem 11 (2010) 1491-1495. |
[1] | Yujeong Jeong, Shreyanka Shankar Naik, Yiseul Yu, Jayaraman Theerthagiri, Seung Jun Lee, Pau Loke Show, Hyun Chul Choi, Myong Yong Choi. Ligand-free monophasic CuPd alloys endow boosted reaction kinetics toward energy-efficient hydrogen fuel production paired with hydrazine oxidation [J]. J. Mater. Sci. Technol., 2023, 143(0): 20-29. |
[2] | Yabin Jiang, Chi Cao, Yueyang Tan, Qianwen Chen, Lei Zeng, Wensheng Yang, Zongzhao Sun, Limin Huang. A facile method to introduce a donor-acceptor system into polymeric carbon nitride for efficient photocatalytic overall water splitting [J]. J. Mater. Sci. Technol., 2023, 141(0): 32-41. |
[3] | Jiani Lu, Shaonan Gu, Hongda Li, Yinan Wang, Meng Guo, Guowei Zhou. Review on multi-dimensional assembled S-scheme heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2023, 160(0): 214-239. |
[4] | Xunfu Zhou, Pai Wang, Meng Li, Minfu Wu, Bei Jin, Jin Luo, Meifeng Chen, Xiaoqin Zhou, Yanning Zhang, Xiaosong Zhou. Synergistic effect of phosphorus doping and MoS2 co-catalysts on g-C3N4 photocatalysts for enhanced solar water splitting [J]. J. Mater. Sci. Technol., 2023, 158(0): 171-179. |
[5] | Liming Yang, Tao Yang, Enhui Wang, Xiangtao Yu, Kang Wang, Zhentao Du, Sheng Cao, Kuo-Chih Chou, Xinmei Hou. Bifunctional hierarchical NiCoP@FeNi LDH nanosheet array electrocatalyst for industrial-scale high-current-density water splitting [J]. J. Mater. Sci. Technol., 2023, 159(0): 33-40. |
[6] | Xi Du, Leilei Yin, WenJun Zhang, Maliang Zhang, Kunmei Su, Zhenhuan Li. Synergistic coupling of Ni3ZnC0.7 decorated with homogeneous multimetal CoNiCuFe nitrogen-codoped carbon matrix as high-entropy catalysts for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2023, 135(0): 26-33. |
[7] | Hongru Zhou, Jun Ke, Desheng Xu, Jie Liu. MnWO4 nanorods embedded into amorphous MoSx microsheets in 2D/1D MoSx/MnWO4 S-scheme heterojunction for visible-light photocatalytic water oxidation [J]. J. Mater. Sci. Technol., 2023, 136(0): 169-179. |
[8] | Haibin Ma, Xuejing Yang, Zhili Wang, Qing Jiang. Engineering the interface of porous CoMoO3 nanosheets with Co3Mo nanoparticles for high-performance electrochemical overall water splitting [J]. J. Mater. Sci. Technol., 2023, 137(0): 184-192. |
[9] | Zepeng Lv, Jinshuai Fei, Yang You, Xuewei Lv, Qian Li, Jie Dang. Synergism and anion-cation dual chemical substitution in heterostructure sprouted on MXene enable high-efficiency and stable overall water splitting [J]. J. Mater. Sci. Technol., 2023, 147(0): 207-216. |
[10] | Thanh Tam Thi Tran, Van-Huy Trinh, Jeongsuk Seo. Two-dimensional perovskite SrNbO2N with Zr doping for accelerating photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2023, 142(0): 176-184. |
[11] | Zige Tai, Guotai Sun, Ting Wang, Zhihui Li, Jinge Tai. Construction of PdS@MIL-125-NH2@ZnS type-II heterostructure with efficient charge separation for boosted photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2023, 145(0): 116-124. |
[12] | Kusum Sharma, Abhinandan Kumar, Tansir Ahamad, Quyet Van Le, Pankaj Raizada, Archana Singh, Lan Huong Nguyen, Sourbh Thakur, Van-Huy Nguyen, Pardeep Singh. Sulphur vacancy defects engineered metal sulfides for amended photo(electro)catalytic water splitting: A review [J]. J. Mater. Sci. Technol., 2023, 152(0): 50-64. |
[13] | Rongan He, Jingrun Ran. Dilemma faced by photocatalytic overall water splitting [J]. J. Mater. Sci. Technol., 2023, 157(0): 107-109. |
[14] | Guohua Li, Fan Yang, Sai Che, Hongchen Liu, Neng Chen, Jinxiu Qian, Chunhui Yu, Bo Jiang, Mengxi Liu, Yongfeng Li. Mo-doped CoP nanoparticles anchored on porous Co-N-C framework as an efficient bifunctional electrocatalyst for pH-universal water splitting [J]. J. Mater. Sci. Technol., 2023, 166(0): 58-66. |
[15] | Jian Chen, Zhen Hu, Yang Ou, Qinghua Zhang, Xiaopeng Qi, Lin Gu, Tongxiang Liang. Interfacial engineering regulated by CeOx to boost efficiently alkaline overall water splitting and acidic hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2022, 120(0): 129-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||