J. Mater. Sci. Technol. ›› 2023, Vol. 154: 107-113.DOI: 10.1016/j.jmst.2022.12.062
• Research Article • Previous Articles Next Articles
Huayu Penga,1, Yuxuan Houa,1, He Zhenga,b,c,*, Ligong Zhaoa, Ying Zhanga, Weiwei Menga, Ting Liua, Peili Zhaoa, Shuangfeng Jiaa, Jianbo Wanga,d,*
Received:
2022-11-04
Revised:
2022-12-04
Accepted:
2022-12-11
Published:
2023-08-10
Online:
2023-03-10
Contact:
*School of Physics and Technology, Center for Elec-tron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China. E-mail addresses: zhenghe@whu.edu.cn (H. Zheng), wang@whu.edu.cn (J. Wang)
About author:
1These authors contributed equally to this work.
Huayu Peng, Yuxuan Hou, He Zheng, Ligong Zhao, Ying Zhang, Weiwei Meng, Ting Liu, Peili Zhao, Shuangfeng Jia, Jianbo Wang. Orientation-dependent ductility and deformation mechanisms in body-centered cubic molybdenum nanocrystals[J]. J. Mater. Sci. Technol., 2023, 154: 107-113.
[1] G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12(2013) 344-350. [2] J. Wadsworth, T.G. Nieh, J.J. Stephens, Int. Mater. Rev. 33(1988) 131-150. [3] Y. Qian, B.W. Soon, C. Lee, J. Microelectromech. Syst. 24(2015) 1878-1886. [4] Y.C. Yang, Z.G. Song, G.Y. Lu, Q.H. Zhang, B.Y. Zhang, B. Ni, C. Wang, X.Y. Li, L. Gu, X.M. Xie, H.J. Gao, J. Lou, Nature 594 (2021) 57-61. [5] C.Q. Dang, W.T. Lin, F.L. Meng, H.T. Zhang, S.F. Fan, X.C. Li, K. Cao, H.K. Yang, W.Z. Zhou, Z.J. Fan, J.J. Kai, Y. Lu, J. Mater. Sci.Technol. 95(2021) 193-202. [6] J.F. Zhang, Y.R. Li, X.C. Li, Y.D. Zhai, Q. Zhang, D.F. Ma, S.C. Mao, Q.S. Deng, Z.P. Li, X.Q. Li, X.D. Wang, Y.N. Liu, Z. Zhang, X.D. Han, Nat. Commun. 12(2021) 2218. [7] L. Liu, H.C. Wu, J. Wang, S.K. Gong, S.X. Mao, Philos. Mag. Lett. 94(2014) 225-232. [8] A. Banerjee, D. Bernoulli, H.T. Zhang, M.F. Yuen, J.B. Liu, J.C. Dong, F. Ding, J. Lu, M. Dao, W.J. Zhang, Y. Lu, S. Suresh, Science 360 (2018) 300-302. [9] X.D. Han, K. Zheng, Y.F. Zhang, X.N. Zhang, Z. Zhang, Z.L. Wang, Adv. Mater. 19(2007) 2112-2118. [10] R.Z. Su, D. Neffati, J. Cho, Z.X. Shang, Y.F. Zhang, J. Ding, Q. Li, S.C. Xue, H.Y. Wang, Y. Kulkarni, X.H. Zhang, Sci. Adv. 7 (2021) eabc8288. [11] D. Farkas, B. Hyde, Nano Lett. 5(2005) 2403-2407. [12] X. Tian, D. Li, Y. Yu, Z.J. You, T. Li, L. Ge, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. A 690 (2017) 277-282. [13] S.A. Kotrechko, A.V. Filatov, A.V. Ovsjannikov, Theor. Appl. Fract. Mech. 45(2006) 92-99. [14] P. Wang, W. Chou, A.M. Nie, Y. Huang, H.M. Yao, H.T. Wang, J. Appl. Phys. 110(2011) 093521. [15] S.Z. Li, X.D. Ding, J.K. Deng, T. Lookman, J. Li, X.B. Ren, J. Sun, A. Saxena, Phys. Rev. B 82 (2010) 205435. [16] Y. Lu, S.D. Sun, Y.P. Zeng, Q.S. Deng, Y.H. Chen, Y.Z. Li, X.Y. Li, L.H. Wang, X.D. Han, Mater. Res. Lett. 8(2020) 348-355. [17] S.J. Wang, H. Wang, K. Du, W. Zhang, M.L. Sui, S.X. Mao, Nat. Commun. 5(2014) 3433. [18] Y. Lu, X.Y. Shu, Z.P. Li, H.B. Long, D.L. Kong, S.D. Sun, Q.S. Deng, Y.H. Chen, Z.W. Hu, L.H. Wang, X.D. Han, J. Alloy. Compd. 806(2019) 283-291. [19] Y. Lu, S.S. Xiang, L.R. Xiao, L.H. Wang, Q.S. Deng, Z. Zhang, X.D. Han, Sci. Rep. 6(2016) 22937. [20] J.M. Wang, W.Y. Hu, X.F. Li, S.F. Xiao, H.Q. Deng, Comput. Mater. Sci. 50(2010) 373-377. [21] X. Li, W. Hu, S. Xiao, W.Q. Huang, Phys. E 43 (2011) 1131-1139. [22] J.Y. Kim, D. Jang, J.R. Greer, Int. J. Plast. 28(2012) 46-52. [23] S. Brinckmann, J.Y. Kim, J.R. Greer, Phys. Rev. Lett. 100(2008) 155502. [24] L. Huang, Q.J. Li, Z.W. Shan, J. Li, J. Sun, E. Ma, Nat. Commun. 2(2011) 547. [25] J.Y. Kim, J.R. Greer, Appl. Phys. Lett. 93(2008) 101916. [26] M. Zaiser, J. Schwerdtfeger, A.S. Schneider, C.P. Frick, B.G. Clark, P.A. Gruber, E. Arzt, Philos. Mag. 88(2008) 3861-3874. [27] Q. Zhang, R.R. Huang, X. Zhang, T.Q. Cao, Y.F. Xue, X.Y. Li, Nano Lett. 21(2021) 3671-3679. [28] R.Y. Zheng, W.R. Jian, I.J. Beyerlein, W.Z. Han, Nano Lett. 21(2021) 5798-5804. [29] G.M. Cheng, W.W. Jian, W.Z. Xu, H. Yuan, P.C. Millett, Y.T. Zhu, Mater. Res. Lett. 1(2012) 26-31. [30] L. Dezerald, D. Rodney, E. Clouet, L. Ventelon, F. Willaime, Nat. Commun. 7(2016) 11695. [31] M.S. Duesbery, V. Vitek, Acta Mater. 46(1998) 1481-1492. [32] K. Srivastava, D. Weygand, D. Caillard, P. Gumbsch, Nat. Commun. 11(2020) 5098. [33] Y. Lu, X.Y. Shu, X.Z. Liao, Sci. China Mater. 61(2018) 1495-1516. [34] F. Wang, G.H. Balbus, S.Z. Xu, Y.Q. Su, J. Shin, P.F. Rottmann, K.E. Knipling, J.C. Stinville, L.H. Mills, O.N. Senkov, I.J. Beyerlein, T.M. Pollock, D.S. Gianola, Science 370 (2020) 95-101. [35] G. Sainath, B.K. Choudhary, Comput. Mater. Sci. 111(2016) 406-415. [36] G. Sainath, B.K. Choudhary, T. Jayakumar, Comput. Mater. Sci. 104(2015) 76-83. [37] A.J. Cao, J. Appl. Phys. 108(2010) 113531. [38] H.P. Sheng, H. Zheng, F. Cao, S.J. Wu, L. Li, C. Liu, D.S. Zhao, J.B. Wang, Nano Res. 8(2015) 3687-3693. [39] H. Zheng, A. Cao, C.R. Weinberger, J.Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, S.X. Mao, Nat. Commun. 1(2010) 144. [40] H. Zheng, J. Wang, J.Y. Huang, A. Cao, S.X. Mao, Phys. Rev. Lett. 109(2012) 225501. [41] L. Li, G.X.J.Chen, H. Zheng, W.W.W. Meng, S.F. Jia, L.G. Zhao, P.L. Zhao, Y. Zhang, S.S. Huang, T.L. Huang, J.B. Wang, Nat. Commun. 12(2021) 3863. [42] P.L. Zhao, X.X. Guan, H. Zheng, S.F. Jia, L. Li, H.H. Liu, L.L. Zhao, H.P. Sheng, W.W. Meng, Y.L. Zhuang, J.B. Wu, L.Y. Li, J.B. Wang, Phys. Rev. Lett. 123(2019) 216101. [43] H. Zheng, J. Wang, J.Y. Huang, J. Wang, S.X. Mao, Nanoscale 6 (2014) 9574-9578. [44] P. Liu, X. Wei, S.X. Song, L.H. Wang, A. Hirata, T. Fujita, X.D. Han, Z. Zhang, M.W. Chen, Acta Mater. 165(2019) 99-108. [45] J.Q. Zhang, K. Ishizuka, M. Tomitori, T. Arai, Y. Oshima, Nanotechnology 31 (2020) 205706. [46] S.D. Sun, D.W. Li, C.P. Yang, L.B. Fu, D.L. Kong, Y. Lu, Y.Z. Guo, D.M. Liu, P.F. Guan, Z. Zhang, J. Chen, W.Q. Ming, L.H. Wang, X.D. Han, Phys. Rev. Lett. 128(2022) 015701. [47] L.H. Wang, Y. Zhang, Z. Zeng, H. Zhou, J. He, P. Liu, M.W. Chen, J. Han, D.J. Srolovitz, J. Teng, Y.Z. Guo, G. Yang, D.L. Kong, E. Ma, Y.L. Hu, B.C. Yin, X.X. Huang, Z. Zhang, T. Zhu, X.D. Han, Science 375 (2022) 1261-1265. [48] J.W. Wang, Z. Zeng, C.R. Weinberger, Z. Zhang, T. Zhu, S.X. Mao, Nat. Mater. 14(2015) 594-600. [49] Y. Lu, J.Y. Huang, C. Wang, S.H. Sun, J. Lou, Nat. Nanotechnol. 5(2010) 218-224. [50] S. Plimpton, J. Comput. Phys. 117(1995) 1-19. [51] A. Stukowski, Model. Simul. Mater. Sci. Eng. 18(2010) 015012. [52] G.J. Ackland, R. Thetford, Philos. Mag. A Phys.Condens. Matter Struct. Defect Mech. Prop. 56(1987) 15-30. [53] P. Hirel, Comput. Phys. Commun. 197(2015) 212-219. [54] W.G. Hoover, Phys. Rev. A 31 (1985) 1695-1697. [55] H. Tsuzuki, P.S. Branicio, J.P. Rino, Comput. Phys. Commun. 177(2007) 518-523. [56] A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20(2012) 085007. [57] Z. Wu, Y.W. Zhang, M.H. Jhon, H. Gao, D.J. Srolovitz, Nano Lett. 12(2012) 910-914. [58] Y.T. Zhu, X.L. Wu, Mater. Today Nano 2 (2018) 15-20. [59] A.H. Cottrell, Proc. R. Soc. Lond. A 276 (1963) 1364. [60] Z. Shi, C.V. Singh, Scr. Mater. 113(2016) 214-217. [61] S.Y. Wei, Q.N. Wang, H. Wei, J.W. Wang, Mater. Res. Lett. 7(2019) 210-216. [62] J.W. Wang, Y.M. Wang, W. Cai, J.X. Li, Z. Zhang, S.X. Mao, Sci. Rep. 8(2018) 4574. [63] P.A.Tamayo-Meza, V.Yermishkin, P. Schabes-Retchkiman, J. Appl. Phys. 107(2010) 073503. [64] J.W. Wang, Z. Zeng, M.R. Wen, Q.N. Wang, D.K. Chen, Y. Zhang, P. Wang, H.T. Wang, Z. Zhang, S.X. Mao, T. Zhu, Sci. Adv. 6 (2020) eaay2792. [65] Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57(2012) 1-62. [66] J. Wang, A.H.M.Faisal, X. Li, Y.Hong, Q. Zhu, H. Bei, Z. Zhang, S.X. Mao, C.R. Weinberger, J. Mater. Sci. Technol. 106(2022) 33-40. [67] Y.H. Yue, P. Liu, Q.S. Deng, E. Ma, Z. Zhang, X.D. Han, Nano Lett. 12(2012) 4045-4049. [68] Q.N. Wang, J.W. Wang, J.X. Li, Z. Zhang, S.X. Mao, Sci. Adv. 4 (2018) eaas8850. [69] G. Cao, J.W. Wang, K. Du, X.L. Wang, J.X. Li, Z. Zhang, S.X. Mao, Adv. Funct. Mater. 28(2018) 1805258. |
[1] | Xiaocan Wen, Hailong Huang, Honghui Wu, Meisa Zhou, Yeqiang Bu, Xiaoyuan Yuan, Suihe Jiang, Hui Wang, Xiongjun Liu, Hongtao Wang, Jiabin Liu, Yuan Wu, Zhaoping Lu. Enhanced plastic deformation capacity in hexagonal-close-packed medium entropy alloys via facilitating cross slip [J]. J. Mater. Sci. Technol., 2023, 134(0): 1-10. |
[2] | Xing Zhu, Zhiguang Zhu, Tingting Liu, Wenhe Liao, Yulei Du, Huiliang Wei. Crack-free and high-strength AA2024 alloy obtained by additive manufacturing with controlled columnar-equiaxed-transition [J]. J. Mater. Sci. Technol., 2023, 156(0): 183-196. |
[3] | Zi-Meng Wang, Yun-Fei Jia, Kai-Shang Li, Yong Zhang, Jia-Dong Cai, Xian-Cheng Zhang, Hiroyuki Hirakata, Shan-Tung Tu. Lamellar aspect-ratio and thickness-dependent strength-ductility synergy in pure nickel during in-situ micro-tensile loading [J]. J. Mater. Sci. Technol., 2023, 157(0): 89-97. |
[4] | Jing Hu, Weitong Lin, Qingyang Lv, Changyuan Gao, Jun Tan. Oxide formation mechanism of a corrosion-resistant CZ1 zirconium alloy [J]. J. Mater. Sci. Technol., 2023, 147(0): 6-15. |
[5] | Dingding Lu, Ben Lin, Tianle Liu, Sanxi Deng, Youjie Guo, Jinfeng Li, Danyang Liu. Effect of grain structure on fatigue crack propagation behavior of Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2023, 148(0): 75-89. |
[6] | Long Xu, Yandong Jia, Zhenhui Wang, Shiwei Wu, Yuefei Jia, Chuan Geng, Jianchao Peng, Xiaohua Tan, Gang Wang. Dual precipitate simultaneous enhancement of tensile and fatigue strength in (FeCoNi)86Al7Ti7 high-entropy alloy fabricated using selective laser melting [J]. J. Mater. Sci. Technol., 2023, 148(0): 90-104. |
[7] | Bingjie Wang, Qianqian Wang, Bo Sun, Jinyong Mo, Yangbin Guo, Xiubing Liang, Baolong Shen. Nitride-reinforced HfNbTaTiV high-entropy alloy with excellent room and elevated-temperature mechanical properties [J]. J. Mater. Sci. Technol., 2023, 149(0): 31-41. |
[8] | B.J. Wang, D.K. Xu, C.L. Jiang, L.Y. Sheng, E.H. Han. Relationship between the fatigue behavior and grain structures of an as-extruded Mg-6.2%Zn-0.6%Zr (in wt.%) alloy [J]. J. Mater. Sci. Technol., 2023, 149(0): 119-126. |
[9] | Ruitao Qu, Cynthia A. Volkert, Zhefeng Zhang, Feng Liu. Yield strength of “brittle” metallic glass [J]. J. Mater. Sci. Technol., 2023, 149(0): 247-254. |
[10] | Lei Gu, Rui Hou, Yi Liu, Guang Chen, Jihua Liu, Gong Zheng, Ruisheng Zhang, Yonghao Zhao. Strengthening and toughening bulk Ni2CoFeV0.5 medium-entropy alloy via thermo-mechanical treatment [J]. J. Mater. Sci. Technol., 2023, 151(0): 19-29. |
[11] | J.X. Yan, Z.J. Zhang, P. Zhang, J.H. Liu, H. Yu, Q.M. Hu, J.B. Yang, Z.F. Zhang. Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys [J]. J. Mater. Sci. Technol., 2023, 139(0): 232-244. |
[12] | Lishi Ma, Xiang Zhang, Yonghua Duan, Siyuan Guo, Dongdong Zhao, Chunnian He, Naiqin Zhao. Constructing the coherent transition interface structure for enhancing strength and ductility of hexagonal boron nitride nanosheets/Al composites [J]. J. Mater. Sci. Technol., 2023, 145(0): 235-248. |
[13] | Xianghui Zhu, Xusheng Yang, Weijiu Huang, Weiyi Qiu, Xin Wang, Fei Guo, Li Hu, Miao Gong. Influence of pre-stretching on the tensile strength, fatigue properties and the in-plane anisotropy in Al-Cu-Li alloy AA2099 [J]. J. Mater. Sci. Technol., 2023, 145(0): 249-259. |
[14] | Xiangcheng Cui, Weihua Hu, Xing Lu, Yunzhuo Lu. Laser additive manufacturing of laminated bulk metallic glass composite with desired strength-ductility combination [J]. J. Mater. Sci. Technol., 2023, 147(0): 68-76. |
[15] | Wei Fu, Pengfei Dang, Shengwu Guo, Zijun Ren, Daqing Fang, Xiangdong Ding, Jun Sun. Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy [J]. J. Mater. Sci. Technol., 2023, 134(0): 67-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||