J. Mater. Sci. Technol. ›› 2022, Vol. 130: 219-226.DOI: 10.1016/j.jmst.2022.05.030
• Research Article • Previous Articles Next Articles
Yuzhen Wanga,b, Xuanyi Yuanb, Yongge Caoa,c,*(), Chaoyang Maa,*(
)
Received:
2022-04-06
Revised:
2022-05-16
Accepted:
2022-05-18
Published:
2022-12-10
Online:
2022-12-07
Contact:
Yongge Cao,Chaoyang Ma
About author:
E-mail addresses: machaoyang@sslab.org.cn (C. Ma)Yuzhen Wang, Xuanyi Yuan, Yongge Cao, Chaoyang Ma. Multiple anti-counterfeiting strategy by integrating up-conversion, down-shifting luminescence, phosphorescence and photochromism into NaYTiO4: Bi/Er phosphors[J]. J. Mater. Sci. Technol., 2022, 130: 219-226.
Fig. 1. (a) XRD patterns of NYT: 5 mol% Er doped with various concentration of Bi3+ ions (0-5.0 mol%) and enlarged view of (100) peak. (b) Rietveld refinement XRD patterns of NYT: 5 mol% Er/1 mol% Bi. (c) The crystal structure and Bi/Er ions substitution diagram in NYT host. (d) SEM image and element mappings of NYT: 1.0 mol% Bi/ 5 mol% Er. (e) XPS spectra of NYT: 1.0 mol% Bi/ 5 mol % Er in survey range and enlarged range for Bi 4d5 and Er 4p3.
Empty Cell | NYTB | NYTE | NYTBE |
---|---|---|---|
Space group | Pbcm | Pbcm | Pbcm |
a (Å) | 12.24276(14) | 12.23716(23) | 12.23737(12) |
b (Å) | 5.36043(15) | 5.35952(14) | 5.36013(12) |
c (Å) | 5.35595(13) | 5.35479(13) | 5.35457(11) |
α=β=γ (degree) | 90 | 90 | 90 |
V (Å3) | 351.492(14) | 351.180(14) | 351.227(12) |
Rwp | 12.52% | 10.06% | 11.06% |
Rp | 8.52% | 7.13% | 7.72% |
GOF | 2.72 | 2.27 | 2.50 |
Table 1. Rietveld refinement results of NYT: 1 mol% Bi (NYTB), NYT: 5 mol% Er (NYTE) and NYT: 5 mol% Er/1 mol% Bi (NYTBE).
Empty Cell | NYTB | NYTE | NYTBE |
---|---|---|---|
Space group | Pbcm | Pbcm | Pbcm |
a (Å) | 12.24276(14) | 12.23716(23) | 12.23737(12) |
b (Å) | 5.36043(15) | 5.35952(14) | 5.36013(12) |
c (Å) | 5.35595(13) | 5.35479(13) | 5.35457(11) |
α=β=γ (degree) | 90 | 90 | 90 |
V (Å3) | 351.492(14) | 351.180(14) | 351.227(12) |
Rwp | 12.52% | 10.06% | 11.06% |
Rp | 8.52% | 7.13% | 7.72% |
GOF | 2.72 | 2.27 | 2.50 |
Fig. 2. Up-conversion luminescence properties of NYT: Bi/Er phosphors. (a) UC spectra and (b) relative intensity of green, red and total emission varies with different Bi3+ concentration. (c) UC luminescence at various pumping power, (d) log-log plot of pumping power vs UC intensity under 980 nm irradiation, and (e) the energy level diagrams and possible energy transition mechanism of Er3+ ions. And the insert photos are corresponding luminescence photos of NYT: Bi/Er samples under 980 nm irradiations.
Fig. 3. DS luminescence properties of NYT: Bi/Er phosphors. (a) Absorption of NYT host matrix, comparison of PL and PLE spectra of NYT: Bi, NYT: Er and NYT: Bi/Er phosphors. (b) Decay curves of Bi3+ ions emission at 470 nm of NYT: Bi samples doped with and without Er3+ ions. (c) PL spectra excited by 281 nm. (d) PLE monitored at 551 nm emission, and (e) integral emission intensity at blue, green and whole region of NYT: Er doped with different concentration of Bi3+ ions. (f) Possible energy transfer process of NYT: Bi/Er phosphors.
Fig. 4. Phosphorescence properties of NYT: Bi/Er samples. (a) Phosphorescence spectra of NYT: 1 mol% Bi/ 5 mol% Er phosphors with 254 nm irradiation for 2 min. (b) Logarithmic decay curves of various Bi ions doped NYT: 5 mol% Er, excited at 254 nm and monitored at 551 nm. (c) Normalized TL curves of samples. (d) Possible energy transfer mechanism of phosphorescence process.
Fig. 5. PC performance of NYT: Bi/Er phosphors. (a) UV-vis reflectance spectra of NYT: 1 mol% Bi/5 mol% Er samples irradiated by 365 nm with various time. (b) and (c) Bleaching by operations of heating and 450 nm irradiation, respectively. (d) O 1s XPS spectra before and after 365 nm irradiation. (e) Reflectivity modulation under alternate cycles between 365 nm irradiation and thermal stimulation. (f) Diagram of coloration and bleaching of photochromism.
Fig. 6. Schematic diagram of multimode advanced anti-counterfeiting application based on NYT: Bi/Er phosphors. Various wavelength light irradiated samples of (a) NYT: 1 mol% Bi/5 mol% Er, (b) NYT: 1 mol% Bi and NYT: 5 mol% Er. (c) Multimode advanced anti-counterfeiting experiments of NYT: Bi/Er samples by employing PC, DS, phosphorescence, and UC luminescence.
Fig. 7. Schematic diagram of advanced anti-counterfeiting application based on NYT: 1 mol% Bi/5 mol% Er and NYT: 1 mol% Bi phosphors. (a) the abridged general irradiation view of NYT: Bi and NYT: Bi/Er phosphors by various light sources. “0” shape is for NYT: Bi/Er and “1” shape is for NYT: Bi. (b-f) the corresponding luminescence photos of PC, UC, DS and phosphorescence performances, respectively.
[1] |
W. Ren, G. Lin, C. Clarke, J. Zhou, D. Jin, Adv. Mater. 32 (2020) e1901430.
DOI URL |
[2] |
W. Liu, W. Zhang, R. Liu, G. Li, New J. Chem. 45 (2021) 9818-9828.
DOI URL |
[3] |
M. Ding, B. Dong, Y. Lu, X. Yang, Y. Yuan, W. Bai, S. Wu, Z. Ji, C. Lu, K. Zhang, H. Zeng, Adv. Mater. 32 (2020) e2002121.
DOI URL |
[4] |
K. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, H. Lin, Angew. Chem. Int. Ed. Engl. 55 (2016) 7231-7235.
DOI URL |
[5] |
Z. Zeng, B. Huang, X. Wang, L. Lu, Q. Lu, M. Sun, T. Wu, T. Ma, J. Xu, Y. Xu, S. Wang, Y. Du, C.H. Yan, Adv. Mater. 32 (2020) e2004506.
DOI URL |
[6] |
Y. Zhang, R. Huang, H. Li, Z. Lin, D. Hou, Y. Guo, J. Song, C. Song, Z. Lin, W. Zhang, J. Wang, P.K. Chu, C. Zhu, Small 16 (2020) e2003121.
DOI URL |
[7] |
T. Si, Q. Zhu, J. Xiahou, X. Sun, J.G. Li, ACS Appl. Electron. Mater. 3 (2021) 2005-2016.
DOI URL |
[8] |
Y. Hu, Q. Shao, X. Deng, D. Song, S. Han, Y. Dong, J. Jiang, J. Mater. Chem. C 7 (2019) 11770-11775.
DOI URL |
[9] |
L. Guo, H. Yu, J. Liu, B. Wu, Y. Guo, Y. Fu, L. Zhao, J. Alloy. Compd. 784 (2019) 739-743.
DOI URL |
[10] |
Y. Liu, K. Ai, L. Lu, Nanoscale 3 (2011) 4804-4810.
DOI URL |
[11] |
J. Xu, B. Zhang, L. Jia, Y. Fan, R. Chen, T. Zhu, B. Liu, ACS Appl. Mater. Interfaces 11 (2019) 35294-35304.
DOI URL |
[12] |
T. Si, Q. Zhu, T. Zhang, X. Sun, J. Li, Chem. Eng. J. 426 (2021) 131744.
DOI URL |
[13] |
Q. Jia, Q. Zhang, H. Sun, Y. Li, X. Hao, J. Alloy. Compd. 873 (2021) 159852.
DOI URL |
[14] |
Q. Zhang, J. Tang, P. Du, W. Li, G. Yuan, Z. Liu, L. Luo, J. Eur. Ceram. Soc. 41 (2020) 1904-1916.
DOI URL |
[15] |
H. Chen, Z. Dong, W. Chen, L. Sun, X. Du, Y. Zhao, P. Chen, Z. Wu, W. Liu, Y. Zhang, Adv. Opt. Mater. 8 (2020) 1902125.
DOI URL |
[16] |
Y. Zhu, H. Sun, Q. Jia, L. Guan, X. Hao, Adv. Opt. Mater. 9 (2021) 2001626.
DOI URL |
[17] |
G. Huang, Q. Xia, W. Huang, J. Tian, Z. He, B.S. Li, B.Z. Tang, Angew. Chem. Int. Ed. 58 (2019) 17814-17819.
DOI URL |
[18] |
F. Xiao, M. Wang, Y. Lei, W. Dai, Y. Zhou, M. Liu, W. Gao, X. Huang, H. Wu, J. Mater. Chem. C 8 (2020) 17410-17416.
DOI URL |
[19] |
Y. Wang, C. Zuo, C. Ma, W. Ye, C. Zhao, Z. Feng, Y. Li, Z. Wen, C. Wang, X. Shen, X. Yuan, Y. Cao, J. Alloy. Compd. 876 (2021) 160166.
DOI URL |
[20] |
R.D. Shannon, Acta Crystallogr. A 32 (1976) 751-767.
DOI URL |
[21] |
Y. Jiang, Y. Tong, S. Chen, W. Zhang, F. Hu, R. Wei, H. Guo, Chem. Eng. J. 413 (2021) 127470.
DOI URL |
[22] |
X. Zhang, G. Zhou, J. Zhou, H. Zhou, P. Kong, Z. Yu, J. Zhan, RSC Adv. 4 (2014) 13680-13686.
DOI URL |
[23] |
Y. Jin, Y. Wang, Y. Wang, Ceram. Int. 46 (2020) 22927-22933.
DOI URL |
[24] |
H. Zou, X. Yang, B. Chen, Y. Du, B. Ren, X. Sun, X. Qiao, Q. Zhang, F. Wang, Angew. Chem. Int. Ed. Engl. 58 (2019) 17255-17259.
DOI URL |
[25] |
N. Yang, J. Li, Z. Zhang, D. Wen, Q. Liang, J. Zhou, J. Yan, J. Shi, Chem. Mater. 32 (2020) 6958-6967.
DOI URL |
[26] |
W. Ye, C. Zhao, X. Shen, C. Ma, Z. Deng, Y. Li, Y. Wang, C. Zuo, Z. Wen, Y. Li, X. Yuan, C. Wang, Y. Cao, A.C.S. Appl, Appl. ACS Electron. Mater. 3 (2021) 1403-1412.
DOI URL |
[27] | Y. Chen, Y. Xie, H. Shen, Y. Lei, Y. Zhou, W. Dai, Z. Cai, M. Liu, X. Huang, H. Wu, Chemistry 26 (2020) 17376-17380. |
[28] |
S.M.A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu, Angew. Chem. Int. Ed. Engl. 56 (2017) 12160-12164.
DOI URL |
[29] |
Y. Lei, W. Dai, J. Guan, S. Guo, F. Ren, Y. Zhou, J. Shi, B. Tong, Z. Cai, J. Zheng, Y. Dong, Angew. Chem. Int. Ed. Engl. 59 (2020) 16054-16060.
DOI URL |
[30] |
B. Lou, J. Wen, L. Ning, C. Ma, C. Duan, Phys. Rev. B 104 (2021) 115101.
DOI URL |
[31] |
R. Hu, Y. Zhang, Y. Zhao, X. Wang, G. Li, C. Wang, Chem. Eng. J. 392 (2020) 124807.
DOI URL |
[32] |
X. Dou, H. Xiang, P. Wei, S. Zhang, G. Ju, Z. Meng, L. Chen, Y. Hu, Y. Li, Mater. Res. Bull. 105 (2018) 226-230.
DOI URL |
[33] |
F. Li, X. Wang, M. Zhang, Y. Shen, L. Han, Y. Meng, Z. Li, C. Zhao, J. Eur. Ceram. Soc. 35 (2015) 4217-4223.
DOI URL |
[34] |
Z. Wang, W. Wang, H. Zhou, J. Zhang, S. Peng, Z. Zhao, Y. Wang, Inorg. Chem. 55 (2016) 12822-12831.
DOI URL |
[35] | Z. Yang, J. Du, L. I.D.J. Martin, D. Van der Heggen, D. Poelman, Laser Photonics Rev. 15 (2021) 20 0 0525. |
[36] |
J. Lin, J. Zhai, X. Wu, H. Ye, H. Wang, ACS Appl. Electron. Mater. 3 (2021) 1394-1402.
DOI URL |
[1] | Zhengshuo Wang, Hua Yuan, Yongzhi Zhang, Dandan Wang, Junping Ju, Yeqiang Tan. Recent progress in organic color-tunable phosphorescent materials [J]. J. Mater. Sci. Technol., 2022, 101(0): 264-284. |
[2] | Xiaoqi Meng, Changjiang Zhao, Boxu Xu, Pei Wang, Juncheng Liu. Effects of the annealing temperature on the structure and up-conversion photoluminescence of ZnO film [J]. J. Mater. Sci. Technol., 2018, 34(12): 2392-2397. |
[3] | Yanhua PANG, Wei FENG, Jie CHEN, Yan LIU, Weimin CAI. Controlled Microstructure and Photochromism of Inorganic-organic Thin Films by Ultrasound [J]. J Mater Sci Technol, 2007, 23(04): 477-480. |
[4] | Wei FENG, Tierui ZHANG, Yan LIU, Ran LU, Cheng GUAN, Yingying ZHAO, Jiannian YAO. Preparation and Photochromic Properties of Hybrid Thin Films Based on Heteropolyoxometallate and Polyacrylamide [J]. J Mater Sci Technol, 2002, 18(06): 558-560. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||