J. Mater. Sci. Technol. ›› 2022, Vol. 101: 264-284.DOI: 10.1016/j.jmst.2021.04.039
• Invited Review • Previous Articles Next Articles
Zhengshuo Wang, Hua Yuan*(), Yongzhi Zhang, Dandan Wang, Junping Ju, Yeqiang Tan*(
)
Received:
2021-03-23
Revised:
2021-04-07
Accepted:
2021-04-07
Published:
2022-02-28
Online:
2021-06-17
Contact:
Hua Yuan,Yeqiang Tan
About author:
tanyeqiang@qdu.edu.cn (Y. Tan).Zhengshuo Wang, Hua Yuan, Yongzhi Zhang, Dandan Wang, Junping Ju, Yeqiang Tan. Recent progress in organic color-tunable phosphorescent materials[J]. J. Mater. Sci. Technol., 2022, 101: 264-284.
Fig. 2. (A) Chemical structure and luminescence photographs of SA [46]. (B) The structure of BSA [56]. (C) Luminescence photographs of the D-Xyl crystals taken at room temperature under and after ceasing UV irradiation at different wavelengths [40].
Fig. 3. (A) Photographs of CBSI and OBSI single crystals taken under 312 and 365 nm UV lights or after ceasing the irradiation at room temperature [39]. (B) Photographs of pCBP crystals at different periods of time after removing the excitation source [43]. (C) Photographs of HA crystals taken under 312 and 365 nm UV lights or after ceasing the UV irradiations at room temperature [48]. (D) Chemical structure and photographs of DST and DPT crystal taken after ceasing the 365 nm UV irradiations [60]. (E) The photophysical properties of TMOT. Left: excitation-phosphorescence mapping and UOP spectra of TMOT powder. Right: CIE coordinates and UOP Photographs of TMOT excited by varied wavelength [28].
Fig. 4. (A) Photoluminescence spectra and photographs taken under 365 nm UV lamp of crst-A, B, C and D at room temperature and 77 K. Excitation wavelength (nm): 365 (crst-A), 430 (crst-B), 370 (crst-C and D). Photoluminescence quantum efficiencies of crst-A, B, C and D at room temperature [44]. (B) Photoluminescence spectra, photographs and quantum efficiencies of different crystals of Dye-4 [65].
Fig. 5. (A) Luminescence photographs of PNIPAM solution under or after different wavelengths of UV radiation at 77 K [87]. (B) Schematic illustration of interactions and UOP of PVP and PVP-S [47].
Fig. 6. (A) Schematic illustration of the synthesis and structure of copolymers [92]. (B) Schematic illustration of the synthesis, preparation and luminescence photographs of SA derivatives [37]. (C) Luminescence photographs of PVA doped with polyphosphazenes [33].
Fig. 7. (A) Schematic illustration of CTE mechanism of SA [46]. Crystal structures of CBSI (B) and OBSI (C). (D) Electron densities of HOMO and LUMO levels of CBSI [39].
Fig. 8. (A) The lifetime profiles and PXRD patterns of PSSNa solid in a humid environment. (B) The excitation spectra of PSSNa solid under different emission wavelength at 77 K. (C) 2D GI-WAXS pattern of dry PSSNa film. (D, E) DFT optimizing molecular structures of PSSNa. (F) Proposed mechanism for color-tunable phosphorescence of PSSNa [90]. (G, H, I) Schematic illustration and proposed mechanism for color-tunable phosphorescence of P4 doped in PVA films. (J) AFM characterization of films with different doping concentrations. (K) Cross-sectional analysis along the red lines corresponding to (J) [33].
Fig. 14. (A) Schematic illustration for the preparation of anti-counterfeiting ink. (B) The UOP photograph of the anti-counterfeiting of doped PVA [33].
Fig. 9. (A) H-aggregation in crystal structures of TMOT [28]. (B) Phosphorescent properties of DPT and DST. (C) Crystal structures of DPT and DST [60]. (D) Schematic illustration of the J-aggregation to improve phosphorescence efficiency of TX derivatives [97].
Fig. 10. (A) Schematic illustration of the PDNA (left) and color tunable phosphorescence of PDNA (right) and proposed mechanism of color-tunable phosphorescence of PDNA [38]. (B) Proposed mechanism and theoretical calculation of pCBP (left) and mCBP (right) [43]. (C) Schematic illustration of proposed mechanism of the tri-mode afterglow of DCzB [7].
Fig. 11. (A) Schematic illustration of multi-channel and static anticounterfeiting of TPA crystal powder. (B) Schematic illustration of multi-channel and dynamic anticounterfeiting of CBSI crystal powder [39]. (C) Anticounterfeiting patterns of HA [48]. (D) Schematic illustration of dual-coded anticounterfeiting of pCBP [43].
Fig. 12. (A) Schematic illustration of screen printing for encryption and color-tunable UOP with different excitation wavelengths and time. (B) Schematic illustration of encryption of MEL-containing epoxy resin patterns. (C) Schematic illustration of binary coding and two-dimensional code recognition [103].
Fig. 13. (A, B) Schematic illustration of anticounterfeiting of SA derivatives as ink. (C) Schematic illustration of multi-coding data encryption using SA-Np as ink with time-dependent and λex-dependent afterglows. [37]
Fig. 15. (A) Afterglow photographs of the patterns of DCzB crystal powder before (UV on) and after (UV off) ceasing the 365 nm UV light at different temperature [7]. (B) PXRD patterns of TPA in solid fumed with ammonia or hydrogen chloride gas and with different periods of exposure time. Inset: corresponding UOP photographs of the samples. (C) The corresponding phosphorescence spectra of the TPA shown in (B) [47]. (D) The color chart of UV light detection used with glycolylurea crystals [27].
[1] | T.C. O’Haver, J.Chem. Educ. 55 (1978) 423-428. |
[2] | J.R. Partington, Ann. Sci. 11 (1955) 1-26. |
[3] | B. Valeur, M.N. Berberan-Santos, J.Chem. Educ. 88 (2011) 731-738. |
[4] | Y. Ma, H. Zhang, J. Shen, C. Che, Synth. Met. 94 (1998) 245-248. |
[5] | Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J. Qin, D. Ma, Angew. Chem. Int. Ed. 47 (2008) 8104-8107. |
[6] | S.M.A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu, Angew. Chem. Int. Ed. 56 (2017) 12160-12164. |
[7] | J. Jin, H. Jiang, Q. Yang, L. Tang, Y. Tao, Y. Li, R. Chen, C. Zheng, Q. Fan, K.Y. Zhang, Q. Zhao, W. Huang, Nat. Commun. 11 (2020) 842. |
[8] | J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu, Z. Li, Nat. Commun. 9 (2018) 840. |
[9] | L. Bai, N. Xue, Y. Zhao, X. Wang, C. Lu, W. Shi, Nano Res. 11 (2018) 2034-2045. |
[10] | Y. Deng, D. Zhao, X. Chen, F. Wang, H. Song, D. Shen, Chem. Commun. 49 (2013) 5751-5753. |
[11] | K. Jiang, Y. Wang, X. Gao, C. Cai, H. Lin, Angew. Chem. Int. Ed. 57 (2018) 6216-6220. |
[12] | I.E. Pomestchenko, C.R. Luman, M. Hissler, R. Ziessel, F.N. Castellano, Inorg. Chem. 42 (2003) 1394-1396. |
[13] | S.B. Zhao, T. McCormick, S. Wang, Inorg. Chem. 46 (2007) 10965-10967. |
[14] | O. Bolton, K. Lee, H.J. Kim, K.Y. Lin, J. Kim, Nat. Chem. 3 (2011) 205-210. |
[15] | G. Zhang, J. Chen, S.J. Payne, S.E. Kooi, J.N. Demas, C.L. Fraser, J. Am. Chem. Soc. 129 (2007) 8942-8943. |
[16] | M. Baroncini, G. Bergamini, P. Ceroni, Chem. Commun. 53 (2017) 2081-2093. |
[17] | S. Hirata, Adv. Opt. Mater. 5 (2017) 1700116. |
[18] | J. Kuijt, F. Ariese, U.A.T. Brinkman, C. Gooijer, Anal. Chim. Acta 488 (2003) 135-171. |
[19] | K. Kanosue, S. Ando, ACS. Macro. Lett. 5 (2016) 1301-1305. |
[20] | J. Wei, B. Liang, R. Duan, Z. Cheng, C. Li, T. Zhou, Y. Yi, Y. Wang, Angew. Chem. Int. Ed. 55 (2016) 15589-15593. |
[21] | D.F. Evans, Nature 176 (1955) 777-778. |
[22] | S. Scypinski, L.J.C. Love, Anal. Chem. 56 (1984) 331-336. |
[23] | M. Shimizu, T. Kinoshita, R. Shigitani, Y. Miyake, K. Tajima, Mater. Chem. Front. 2 (2018) 347-354. |
[24] | W.Z. Yuan, X.Y. Shen, H. Zhao, J.W.Y. Lam, L. Tang, P. Lu, C. Wang, Y. Liu, Z. Wang, Q. Zheng, J.Z. Sun, Y. Ma, B.Z. Tang, J. Phys. Chem. C 114 (2010) 6090-6099. |
[25] | X. Zhang, L. Du, W. Zhao, Z. Zhao, Y. Xiong, X. He, P.F. Gao, P. Alam, C. Wang, Z. Li, J. Leng, J. Liu, C. Zhou, J.W.Y. Lam, D.L. Phillips, G. Zhang, B.Z. Tang, Nat. Commun. 10 (2019) 5161. |
[26] | Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 14 (2015) 685-690. |
[27] | L. Bian, H. Ma, W. Ye, A. Lv, H. Wang, W. Jia, L. Gu, H. Shi, Z. An, W. Huang, Sci. China Chem. 63 (2020) 1443-1448. |
[28] | L. Gu, H. Shi, L. Bian, M. Gu, K. Ling, X. Wang, H. Ma, S. Cai, W. Ning, L. Fu, H. Wang, S. Wang, Y. Gao, W. Yao, F. Huo, Y. Tao, Z. An, X. Liu, W. Huang, Nat. Photon. 13 (2019) 406-411. |
[29] | P. Alam, N.L.C. Leung, J. Liu, T.S. Cheung, X. Zhang, Z. He, R.T.K. Kwok, J.W.Y. Lam, H.H.Y. Sung, I.D. Williams, C.C.S. Chan, K.S. Wong, Q. Peng, B.Z. Tang, Adv. Mater. 32 (2020) 2001026. |
[30] | R. Kabe, C. Adachi, Nature 550 (2017) 384-387. |
[31] | Y. Su, S.Z.F. Phua, Y. Li, X. Zhou, D. Jana, G. Liu, W.Q. Lim, W.K. Ong, C. Yang, Y. Zhao, Sci. Adv. 4 (2018) eaas9732. |
[32] | Y. Su, Y. Zhang, Z. Wang, W. Gao, P. Jia, D. Zhang, C. Yang, Y. Li, Y. Zhao, Angew. Chem. Int. Ed. Engl. 59 (2020) 9967-9971. |
[33] | Z. Wang, Y. Zhang, C. Wang, X. Zheng, Y. Zheng, L. Gao, C. Yang, Y. Li, L. Qu, Y. Zhao, Adv. Mater. 32 (2020) e1907355. |
[34] | Y. Gong, G. Chen, Q. Peng, W.Z. Yuan, Y. Xie, S. Li, Y. Zhang, B.Z. Tang, Adv. Mater. 27 (2015) 6195-6201. |
[35] | Z. He, H. Gao, S. Zhang, S. Zheng, Y. Wang, Z. Zhao, D. Ding, B. Yang, Y. Zhang, W.Z. Yuan, Adv. Mater. 31 (2019) 1807222. |
[36] | Y. Lei, W. Dai, J. Guan, S. Guo, F. Ren, Y. Zhou, J. Shi, B. Tong, Z. Cai, J. Zheng, Y. Dong, Angew. Chem. Int. Ed. 59 (2020) 16054-16060. |
[37] | X. Dou, T. Zhu, Z. Wang, W. Sun, Y. Lai, K. Sui, Y. Tan, Y. Zhang, W.Z. Yuan, Adv. Mater. (2020) e2004768. |
[38] | L. Gu, H. Wu, H. Ma, W. Ye, W. Jia, H. Wang, H. Chen, N. Zhang, D. Wang, C. Qian, Z. An, W. Huang, Y. Zhao, Nat. Commun. 11 (2020) 944. |
[39] | S. Zheng, T. Zhu, Y. Wang, T. Yang, W.Z. Yuan, Angew. Chem. Int. Ed. Engl. 59 (2020) 10018-10022. |
[40] | Q. Zhou, T. Yang, Z. Zhong, F. Kausar, Z. Wang, Y. Zhang, W.Z. Yuan, Chem. Sci. 11 (2020) 2926-2933. |
[41] | J. Chen, T. Yu, E. Ubba, Z. Xie, Z. Yang, Y. Zhang, S. Liu, J. Xu, M.P. Aldred, Z. Chi, Adv. Opt. Mater. 7 (2019) 1801593. |
[42] | J. Tan, Q. Li, S. Meng, Y. Li, J. Yang, Y. Ye, Z. Tang, S. Qu, X. Ren, Adv. Mater. 34 (2021) 2006781. |
[43] | J.X. Wang, Y.G. Fang, C.X. Li, L.Y. Niu, W.H. Fang, G. Cui, Q.Z. Yang, Angew. Chem. Int. Ed. Engl. 59 (2020) 10032-10036. |
[44] | Z. He, W. Li, G. Chen, Y. Zhang, W.Z. Yuan, Chin. Chem. Lett. 30 (2019) 933-936. |
[45] | Z. Niu, C. Ma, W. Ye, H. Wang, W. Jia, H. Shi, H. Shi, Z. An, W. Huang, RSC Adv. 9 (2019) 19075-19078. |
[46] | X. Dou, Q. Zhou, X. Chen, Y. Tan, X. He, P. Lu, K. Sui, B.Z. Tang, Y. Zhang, W.Z. Yuan, Biomacromolecules 19 (2018) 2014-2022. |
[47] | H. Wang, H. Shi, W. Ye, X. Yao, Q. Wang, C. Dong, W. Jia, H. Ma, S. Cai, K. Huang, L. Fu, Y. Zhang, J. Zhi, L. Gu, Y. Zhao, Z. An, W. Huang, Angew. Chem. Int. Ed. Engl. 58 (2019) 18776-18782. |
[48] | Y. Wang, S. Tang, Y. Wen, S. Zheng, B. Yang, W.Z. Yuan, Mater. Horiz. 7 (2020) 2105-2112. |
[49] | S. Niu, H. Yan, S. Li, C. Tang, Z. Chen, X. Zhi, P. Xu, J. Mater. Chem. C 4 (2016) 6881-6893. |
[50] | Y. Du, T. Bai, F. Ding, H. Yan, Y. Zhao, W. Feng, Polym. J. 51 (2019) 869-882. |
[51] | X. Chen, W. Luo, H. Ma, Q. Peng, W.Z. Yuan, Y. Zhang, Sci. China Chem. 61 (2018) 351-359. |
[52] | Y. Wang, Z. Zhao, W.Z. Yuan, ChemPlusChem 85 (2020) 1065-1080. |
[53] | Y. Gong, Y. Tan, J. Mei, Y. Zhang, W. Yuan, Y. Zhang, J. Sun, B.Z. Tang, Sci. China Chem. 56 (2013) 1178-1182. |
[54] | H. Zhang, Z. Zhao, P.R. McGonigal, R. Ye, S. Liu, J.W.Y. Lam, R.T.K. Kwok, W.Z. Yuan, J. Xie, A.L. Rogach, B.Z. Tang, Mater. Today 32 (2020) 275-292. |
[55] | W. Zhang Yuan, Y. Zhang, J. Polym. Sci. Part A 55 (2017) 560-574. |
[56] | Q. Wang, X. Dou, X. Chen, Z. Zhao, S. Wang, Y. Wang, K. Sui, Y. Tan, Y. Gong, Y. Zhang, W.Z. Yuan, Angew. Chem. Int. Ed. Engl. 58 (2019) 12667-12673. |
[57] | A.H. Maki, J.A. Zuclich, in: A. Devaquet, W.G. Dauben, G. Lodder, J. Ipak- tschi, A.H. Maki, J.A. Zuclich (Eds.), Triplet States I, Springer, Berlin Heidelberg, Berlin, Heidelberg, 1975, pp. 115-163. |
[58] | Y.A. Vladimirov, Photochem. Photobiol. 4 (1965) 369-384. |
[59] | K. Bauri, B. Saha, A. Banerjee, P. De, Polym. Chem. 11 (2020) 7293-7315. |
[60] | Z. Cheng, H. Shi, H. Ma, L. Bian, Q. Wu, L. Gu, S. Cai, X. Wang, W.W. Xiong, Z. An, W. Huang, Angew. Chem. Int. Ed. Engl. 57 (2018) 678-682. |
[61] | H. Hu, F. Meier, D. Zhao, Y. Abe, Y. Gao, B. Chen, T. Salim, E.E.M. Chia, X. Qiao, C. Deibel, Y.M. Lam, Adv. Mater. 30 (2018) 1707621. |
[62] | J. Wang, X. Gu, H. Ma, Q. Peng, X. Huang, X. Zheng, S.H.P. Sung, G. Shan, J.W.Y. Lam, Z. Shuai, B.Z. Tang, Nat. Commun. 9 (2018) 2963. |
[63] | L.J. Xu, A. Plaviak, X. Lin, M. Worku, Q. He, M. Chaaban, B.J. Kim, B. Ma, Angew. Chem. Int. Ed. Engl. 59 (2020) 23067-23071. |
[64] | X. Yang, D. Yan, Adv. Opt. Mater. 4 (2016) 897-905. |
[65] | I.T. Ishi, H. Tanaka, I.S. Park, T. Yasuda, S.I. Kato, M. Ito, H. Hiyoshi, T. Mat- sumoto, Chem. Commun. 56 (2020) 4051-4054. |
[66] | G. He, L. Du, Y. Gong, Y. Liu, C. Yu, C. Wei, W.Z. Yuan, ACS Omega 4 (2019) 344-351. |
[67] | S. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S.R. Marder, T. Watanabe, C. Adachi, Adv. Funct. Mater. 23 (2013) 3386-3397. |
[68] | M.S. Kwon, Y. Yu, C. Coburn, A.W. Phillips, K. Chung, A. Shanker, J. Jung, G. Kim, K. Pipe, S.R. Forrest, J.H. Youk, J. Gierschner, J. Kim, Nat. Commun. 6 (2015) 8947. |
[69] | D. Lee, O. Bolton, B.C. Kim, J.H. Youk, S. Takayama, J. Kim, J. Am. Chem. Soc. 135 (2013) 6325-6329. |
[70] | D. Li, F. Lu, J. Wang, W. Hu, X.M. Cao, X. Ma, H. Tian, J. Am. Chem. Soc. 140 (2018) 1916-1923. |
[71] | X. Ma, J. Wang, H. Tian, Acc. Chem. Res. 52 (2019) 738-748. |
[72] | X. Ma, C. Xu, J. Wang, H. Tian, Angew. Chem. Int. Ed. 57 (2018) 10854-10858. |
[73] | Z.Y. Zhang, Y. Chen, Y. Liu, Angew. Chem. Int. Ed. 58 (2019) 6028-6032. |
[74] | E. Dai, G. Li, G. Lu, W. Wang, Z. Han, Z. Song, Q. Zhang, H. Yuan, X. Zhang, J. Ind. Text. 0 (2020) 1-17. |
[75] | Q. Peng, H. Cong, B. Yu, L. Wei, K. Mahmood, H. Yuan, R. Yang, X. Zhang, Y. Wu, J. Colloid Interface Sci. 522 (2018) 144-150. |
[76] | H. Yuan, B. Yu, H. Cong, M. Chi, Y. Cheng, C. Lv, Materials 11 (2018) 481. |
[77] | Y. Zhao, Z. Yang, W. Fan, Y. Wang, G. Li, H. Cong, H. Yuan, Arab. J. Chem. 13 (2020) 3266-3275. |
[78] | Y. Li, H. Yuan, Y. Chen, X. Wei, K. Sui, Y. Tan, J. Mater. Sci. Technol. 74 (2021) 189-202. |
[79] | H. Chen, X. Yao, X. Ma, H. Tian, Adv. Opt. Mater. 4 (2016) 1397-1401. |
[80] | H. Yuan, G. Li, E. Dai, G. Lu, X. Huang, L. Hao, Y. Tan, Chin. J. Chem. 38 (2020) 1767-1779. |
[81] | L. Ma, S. Sun, B. Ding, X. Ma, H. Tian, Adv. Funct. Mater. 31 (2021) 2010659. |
[82] | X. Ma, C. Xu, J. Wang, H. Tian, Angew. Chem. Int. Ed. 57 (2018) 10774. |
[83] | X. Yao, J. Wang, D. Jiao, Z. Huang, O. Mhirsi, F. Lossada, L. Chen, B. Haehnle, A.J.C. Kuehne, X. Ma, H. Tian, A. Walther, Adv. Mater. 33 (2021) e2005973. |
[84] | M.M. Fang, J. Yang, Z. Li, Chin. J. Polym. Sci. 37 (2019) 383-393. |
[85] | N. Gan, H. Shi, Z. An, W. Huang, Adv. Funct. Mater. 28 (2018) 1802657. |
[86] | T. Zhang, X. Ma, H. Wu, L. Zhu, Y. Zhao, H. Tian, Angew. Chem. Int. Ed. 59 (2020) 11206-11216. |
[87] | Q. Zhou, Z. Wang, X. Dou, Y. Wang, S. Liu, Y. Zhang, W.Z. Yuan, Mater. Chem. Front. 3 (2019) 257-264. |
[88] | S. Wang, D. Wu, S. Yang, Z. Lin, Q. Ling, Mater. Chem. Front. 4 (2020) 1198-1205. |
[89] | X. Chen, T. Yang, J. Lei, X. Liu, Z. Zhao, Z. Xue, W. Li, Y. Zhang, W.Z. Yuan, J. Phys. Chem. B 124 (2020) 8928-8936. |
[90] | S. Cai, H. Ma, H. Shi, H. Wang, X. Wang, L. Xiao, W. Ye, K. Huang, X. Cao, N. Gan, C. Ma, M. Gu, L. Song, H. Xu, Y. Tao, C. Zhang, W. Yao, Z. An, W. Huang, Nat. Commun. 10 (2019) 4247. |
[91] | T. Ogoshi, H. Tsuchida, T. Kakuta, T.-a. Yamagishi, A. Taema, T. Ono, M. Sugi- moto, M. Mizuno, Adv. Funct. Mater. 28 (2018) 1707369. |
[92] | T. Zhang, Y. Wu, X. Ma, Chem. Eng. J. 412 (2021) 128689. |
[93] | J. Mei, N.L.C. Leung, R.T.K. Kwok, J.W.Y. Lam, B.Z. Tang, Chem. Rev. 115 (2015) 11718-11940. |
[94] | Z. Zhao, H. Zhang, J.W.Y. Lam, B.Z. Tang, Angew. Chem. Int. Ed. 59 (2020) 9888-9907. |
[95] | R. Tian, S.M. Xu, Q. Xu, C. Lu, Sci. Adv. 6 (2020) eaaz6107. |
[96] | X. Chen, Z. He, F. Kausar, G. Chen, Y. Zhang, W.Z. Yuan, Macromolecules 51 (2018) 9035-9042. |
[97] | Y. Wen, H. Liu, S. Zhang, J. Cao, J. De, B. Yang, Adv. Opt. Mater. 8 (2020) 1901995. |
[98] | M. Kasha, H.R. Rawls, M.Ashraf A. El-Bayoumi, Pure Appl. Chem. 11 (1965) 371-392. |
[99] | J. Zhou, W. Zhang, X.F. Jiang, C. Wang, X. Zhou, B. Xu, L. Liu, Z. Xie, Y. Ma, J. Phys. Chem. C 9 (2018) 596-600. |
[100] | Y. Xie, Y. Ge, Q. Peng, C. Li, Q. Li, Z. Li, Adv. Mater. 29 (2017) 1606829. |
[101] | H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492 (2012) 234-238. |
[102] | Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photon. 8 (2014) 326-332. |
[103] | Y. Miao, S. Liu, L. Ma, W. Yang, J. Li, J. Lv, Anal. Chem. 93 (2021) 4075-4083. |
[104] | S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, G. Shi, Adv. Mater. 28 (2016) 5969-5974. |
[105] | Y. Zheng, W. Wang, Y. Li, J. Lan, Y. Xia, Z. Yang, X. He, G. Li, ACS Appl. Mater. Interfaces 11 (2019) 13589-13597. |
[1] | Xu Han, Jianhua Wu, Xianhui Zhang, Junyou Shi, Jiaxin Wei, Yang Yang, Bo Wu, Yonghui Feng. Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61(0): 46-62. |
[2] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
[3] | Erica Rosella, Nan Jia, Diego Mantovani, Jesse Greener. A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures [J]. J. Mater. Sci. Technol., 2021, 63(0): 54-61. |
[4] | Jingzhi Yang, Hongchang Qian, Junpeng Wang, Pengfei Ju, Yuntian Lou, Guoliang Li, Dawei Zhang. Mechanically durable antibacterial nanocoatings based on zwitterionic copolymers containing dopamine segments [J]. J. Mater. Sci. Technol., 2021, 89(0): 233-241. |
[5] | Camelia Matei Ghimbeu, Aleksandr I. Egunov, Andrey S. Ryzhikov, Valeriy A. Luchnikov. Carbon-Iron Microfibrous Material Produced by Thermal Treatment of Self-rolled Poly(4-vinyl pyridine) Films Loaded by Fe2O3 Particles [J]. J. Mater. Sci. Technol., 2015, 31(9): 881-887. |
[6] | C.X. Dong, S.J. Zhu, Mineo Mizuno, Masami Hashimoto. Fatigue Behavior of HDPE Composite Reinforced with Silane Modified TiO2 [J]. J Mater Sci Technol, 2011, 27(7): 659-667. |
[7] | Mu Zhao, Huaihe Song. Catalytic Graphitization of Phenolic Resin [J]. J Mater Sci Technol, 2011, 27(3): 266-270. |
[8] | G.K.R.Senadeera, J.M.R.C.Fern, o. Polymer Sensitized Quasi Solid-State Photovoltaic Cells Using Derivatives of Polythiophene [J]. J Mater Sci Technol, 2006, 22(06): 811-816. |
[9] | Jianli WANG, Myonghoon LEE, Xiaomei YU, Jianbin JI, Kejian YAO. Polybutylacrylate/poly(methyl methacrylate) Core-Shell Elastic Particles as Epoxy Resin Toughener: Part I Design and Preparation [J]. J Mater Sci Technol, 2004, 20(05): 522-526. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||